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Abstract: Laser chirp contributes significantly to 
the linewidth of near single-mode injection modu- 
lated semiconductor laser devices, and is a conse- 
quence of the carrier dependence of the active 
layer’s refractive index. A model is developed that 
can accurately predict the multimode chirped 
spectra of Fabry-Perot devices based on the trans- 
mission line laser model (TLLM), with the addi- 
tion of a transmission line stub and attenuator to 
the end facets. This time-domain model is easily 
interfaced to both drive circuit and fibre impulse 
response models. A 1550 nm InGaAsP device 
model under picosecond modulation is tested 
against experimental and analytical results of 
other workers. 

1 Introduction 

A knowledge of the spectral output of semiconductor 
lasers under pulse modulation is essential for the design 
of devices for high-data-rate long-haul fibre-optic trans- 
mission systems [l,  2, 31. Such devices are usually single- 
moded to minimise fibre dispersion. However, this is 
considerably increased by the phenomenon of dynamic 
linewidth broadening [4, 5, 6, 7, 81, a.k.a. laser chirp. It is 
desirable, therefore, to be able to model the device to 
optimise its parameters for minimum linewidth before the 
fabrication stage is reached. The ideal model should be 
computationally efficient, accurate, easy to understand, 
and simple to modify to cope with future developments 
[SI. It should also be designed to link into larger system 
models, by the provision of suitable interfaces. The paper 
presents such a model, developed from an earlier model 
by the author [lo], which has been specifically designed 
for multimode and single-mode devices where laser chirp 
is a significant factor. Its interfaces are a sampled drive 
current waveform and an optical output waveform, 
which allow for easy connection to drive circuit and fibre 
impulse response models. 

The transmission line laser model (TLLM) was 
developed to investigate the spectra of multimode lasers 
under modulation. It is based on the transmission line 
modelling (TLM) method for fields [ l l ,  121, and uses 
series connected transmission lines to model the longitu- 
dinal variation of optical electrical field in the lasing 
cavity. The wavelength dependence of the material gain is 
represented by the response of transmission line filters, 
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whose parameters are governed by the local carrier con- 
centration. Unlike other multimode models, which 
provide the power envelope of the laser output for each 
discrete mode [13, 14, 151, the TLLM provides a 
sampled optical output waveform. A fourier transform 
may then be used to convert the waveform into a contin- 
uous spectrum over a given bandwidth. Alternatively, the 
sample waveform may be convolved with the impulse 
response of the transmission fibre. This gives the pulse 
shape at the photodetector end of the fibre, and will show 
accurately the magnitude of the spectral dispersion along 
the fibre. In general, the optical output may be directed 
to any other transmission line model, such as those for 
semiconductor laser amplifiers, photodiodes or filters. 
This feature is one of the principle advantages of adopt- 
ing transmission line modelling for optical systems. The 
model has proved to be faster than a standard numerical 
solution to the multimode rate equations when a longitu- 
dinal gain dependence is required. 

Although the above model is useful in obtaining an 
estimate of the spectral width of multimode lasers, it 
neglects laser chirping, an important factor in the deter- 
mination of the linewidth of modulated single mode 
lasers. This effect, which results from the carrier concen- 
tration dependent refractive index [16, 17, 181, is also 
fundamental in the study of bistability in laser amplifiers 
[19] and in multi-cavity devices [20]. 

Other models are available to estimate the chirp under 
large-signal modulation. These fall into two categories, 
(a) analytical and (b) numerical. The former rely on sim- 
plifying approximations, usually that the optical pulse 
envelope has a Gaussian form, and the carrier concentra- 
tion falls linearly during this pulse [7, 8, 211. This yields 
the expression 

tlI2 f l i 2  = 0.44J1 + (1) 

where 
tl12 is the FWHM of the optical pulse, 

f l , 2  is the FWHM of the spectrum, 
c1 is the linewidth enhancement factor [17]. 

Although the above will be shown to give an accurate 
estimate of the spectral width, the predicted form of the 
spectrum is completely different, being a Gaussian shape 
rather than the commonly observed ‘rabbit ear’ shape 
[22, 23, 24, 251. A more complete analysis [26] does 
however include the effects of pulse shape. Another ana- 
lytical approximation used to calculate the pulse disper- 
sion in single-mode fibres [6,27] assumes that the laser is 
blue-shifted for half a relaxation oscillation period at the 
onset of a bit-period pulse, and is similarly red-shifted at 
the pulse end. This treatment effectively divides the 
power spectrum into three : red-shifted, blue-shifted and 
not-shifted. This may be satisfactory for long pulses, but 
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will become inaccurate as the pulse length is reduced 
below the relaxation period. 

Numerical models of chirp are commonly based on a 
rate equation analysis of photon and carrier densities. 
Simple models give the instantaneous frequency by direct 
relation to the carrier density waveform [28]. Anderson 
and Anderson [29] use a Fourier transform of the 
instantaneous phase and power given by a numerical sol- 
ution of the above equations, to produce the power spec- 
tral density (psd) for a single longitudinal mode. 
Similarly, Abdula and Saleh [30] use a Wigner distribu- 
tion function to represent the spectra from a random 
noise driven single-mode numerical solution of the rate 
equations. Osinski & Adams [31, 321 obtain the psd of a 
multi-mode device without using a Fourier, or other, 
transform. This is achieved by splitting the optical pulse 
into time segments and then allocating the power of each 
segment to an appropriate frequency ‘channel’ depending 
on the presiding carrier concentration. This model pro- 
duces an unrealistic spectral resolution, i.e. very narrow 
ears. This problem is resolved by Bickers and Westbrook 
[33] who convolve the spectrum with the response of the 
measuring equipment to find the observable spectrum. 

The paper is partitioned in the following manner: 
Section 2 investigates possible methods of including chirp 
in the TLLM, and hence justifies the use of a ‘stub- 
attenuator’ model. Section 3 deals with the theory of the 
stub-attenuator model, its implementation, and the accu- 
racy of mode position. Section 4 investigates the chirp of 
a pulse-modulated multi-mode 1.55 pm laser. The spectra 
of the laser are compared with both experimental data 
and the analytical model given by eqn. 1. Section 6 draws 
this paper to a conclusion, and suggests future areas of 
application of the TLLM. 

2 Choice of model 

The effect of laser chirp is to shift the output wavelength 
of all the modes of the resonant laser cavity. This is 
because a change in carrier concentration will modulate 
the refractive index of the active region which, in turn, 
produces a smaller modulation of the effective index, n e ,  
of the waveguide [34]. The latter governs the phase 
length of the Fabry-Perot resonant cavity, so shifting the 
cavity’s resonant modes. This section reviews the choices 
available to achieve a suitable model of the above, by 
modification of Reference 10. It is not intended to discuss 
the causes and effects of the carrier dependence, a 
detailed review of which can be found in [17]. 

One obvious model stems from the Kramers-Kronig 
relationship, linking the refractive index shift to the wave- 
length dependence of material gain. The TLLM uses 
filters to represent the gain curve’s frequency dependence. 
These also introduce a phase shift, also governed by the 
same relationship. Thus, if the filters accurately model the 
gain curve of the material, then the refractive index varia- 
tion would also be modelled. However, owing to the 
asymmetry of the gain curve, and its sharp frequency 
dependence, an accurate model is difficult to achieve, and 
such a model would impose heavy penalties on computa- 
tional time. Therefore the Lorentzian model of the gain 
curve introduced in [lo] has been retained. This uses a 
second order bandpass filter based on transmission line 
stub components. Because of its symmetrical nature, this 
has zero phase-shift at the laser resonance, and so some 
other method of obtaining the required phase shift must 
be found. 

A technique designed to extend TLM to model inho- 
mogeneous waveguides [ 123 was then investigated. This 
uses open circuit transmission line stubs to capacitively 
load the transmission lines representing the cavity, thus 
reducing the phase velocity along the lines. In the TLLM, 
a stub was used at every node, its impedance, and hence 
capacitance being dependent upon the local carrier con- 
centration. However this produced an unstable model 
which oscillated at half the Nyquist sampling frequency. 
This problem was caused by the introduction of gain 
between the loading stubs, which reflect part of the inci- 
dent wave according to their impedance. These tend to 
split the main cavity into resonant subsections, each with 
gain. Power circulates and is amplified in these reson- 
ators, until the model becomes unstable. Several tech- 
niques were tried to solve this problem, including 
attenuation of the backward wave and the stored energy 
in the stub, however none proved successful. 

The shift in the cavity resonance could be modelled by 
altering the cavity length to simulate a shift in effective 
index. For example, an increase in effective index by Ane 
over a value of ne can be simulated by an increase in 
cavity length 1 over the normal value L. This approach 
neglects any effects of inhomogeneous effective index, 
such as intra-cavity reflections at impedance boundaries. 
However, as the index modulation along the cavity is 
slowly varying, in terms of wavelengths, and is in any 
case small, then these effects will also be small. The use of 
a multilongitudinal-section model is still justified as inho- 
mogeneous carrier distribution will shift local gain curve 
spectra, leading to a wider effective gain bandwidth and 
so more modes, particularly in low facet reflectivity 
devices. A difficulty imposed by transmission line model- 
ling is that it uses lines of a fixed length. As the cavity is 
an integer number of sections long, this implies that the 
cavity length could only be increased in discrete steps. As 
the section lengths are kept as long as possible, to mini- 
mise computational time, this would give unacceptable 
inaccuracy in the frequency domain. 

A solution to this problem is to represent a small 
section at the end of the cavity and the facet by an 
impedance, the value of which is given by standard trans- 
mission line equations for the input impedance of termin- 
ated lines. This may then be equated to the input 
impedance of a network modelled with transmission line 
stubs. Two possibilities exist: 

(a) to model the imaginary component of the imped- 
ance with a transmission line stub, and the real com- 
ponent with a resistor: the ‘stub-resistor’ model 

(b) to model the impedance with an attenuator 
matched to the reflectivity of the facet, and a stub to 
account for the phase shift of the cavity: the ‘stub- 
attenuator’ model 

These are shown in Figs. la  and lb, respectively. 
In both these models, the impedance is matched at one 

frequency only, usually the laser’s resonance frequency. 
This introduces inaccuracy away from the resonance fre- 
quency. The TLM stub model also introduces inaccu- 
racy, particularly if undersampling is used. However, 
studies show that both of these errors are insignificant, as 
the laser bandwidth is a small fraction of the model’s 
bandwidth. 

Both stub-resistor and stub-attenuator models of a 
cavity were investigated for frequency and phase 
response. The theory and results of these tests will be 
dealt with in the next section. However, the stub attenu- 
ator model showed a distinct, and intuitively obvious, 
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advantage, this being a 'flat' facet amplitude response. 
This contrasts with the stub-resistor model whose 
response is frequency dependent, and so causes a shift in 
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Fig. la  Laser cavity and associated stub-resistor model 

p is the propagation constant inside the cavity 

Thus 

2, = 2, tan (nfAT)/tan (BO (4) 

The above equation is valid when eqn. 2 is positive, i.e. 
the stub impedance is positive. When eqn. 2 is negative, 
then the input impedance of the cavity may be modelled 
using a short-circuited transmission line stub, and eqn. 3 
becomes 

2, = -&/[tan (nfAT) tan (BO] ( 5 )  

The stub and attenuator can now be represented by a 
scattering matrix, which describes the relation between 
reflected and incident pulses at the last cavity node. If p is 
the field reflectivity of the facet, then this matrix is 

the laser central resonance from the gain curve peak. For 
this reason the rest of the paper will concentrate on the 
stub-attenuator (SA) model. 

3 S t u b - a t t e n u a t o r  theory  

The basis for the SA model is that a short extension is 
added between the cavity and the laser facet, usually at 
each end of the cavity. The length of this being dependent 
on the required wavelength increase in the main cavity. 
The attenuating effect of the end facet is then moved from 
the end of the cavity extension to the end of the main 
cavity. This allows the electric field in the cavity exten- 
sion to be modelled by the voltage on an open circuit 
transmission line stub. This technique gives a flat fre- 
quency response as the stub itself is lossless, and the 
attenuator has a flat frequency response. 

The stub length is fixed at one half an interation time- 
step, AT, long. This ensures that a sample pulse, reflected 
into the stub, arrives at the stub terminals for the next 
iteration. Its impedance is made variable to enable differ- 
ent cavity lengths to be accommodated. This impedance 
is found by equating the stub's input impedance to the 
input impedance of the cavity extension. 

The former is given by 

2, = ZJj tan (nfAT) 

where 

2, is the stub impedance 
f i s  the laser resonance frequency 

The latter is given by 

z i c  = zc/j tan (BO (3) 
where 

2, is the cavity wave impedance ([lo], eqn. 3) 
1 is the extra cavity length 
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where 
Vi  is the incident pulse from the cavity (see Fig. lb) 
V i  is the reflected pulse into the cavity 
Vi is the incident pulse from the stub 
Vi is the reflected pulse into the stub 

As the stub is one half of one iteration timestep long, a 
reflected pulse into it will become an incident pulse upon 
the scattering node one iteration later. For a short- 
circuited stub, the phase of the pulse will be reversed 
upon reflection at the end of the stub. The above matrix 
leads to a simple numerical routine in which the reflected 
pulses out of each node are calculated from the incident 
pulses, and vise-versa for each iteration. 

The effect on absolute frequency of the central mode, 
and on modal spacing, of increasing the model's length 
by I ,  can be compared to the theoretical result to obtain a 
relationship between it and An, the carrier induced index 
change in the active layer. In theory, the absolute fre- 
quencyf, is governed by an integer mode number, m, the 
velocity of light, c, the effective index of the waveguide, 
ne, and the cavity length L. If the active layer index is 
increased by An then the resonant frequency will become 
C341 

f = cm/[ 2L( ne + Ti, (7) 

6ne/6n serves to dilute the effect of the active layer index 
change and is commonly made equal to the confinement 
factor, r [17]. 

The TLLM in Reference 10 uses a non-dispersive 
transmission line to model the cavity. To obtain the 
correct mode spacing, the phase velocity in the cavity 
(c/ne) was approximated to the group velocity (cli,). A 
modified mode number, which will now be called m, was 
then used to set the model's resonant frequency to within 
one half of one mode of the absolute frequency. This 
inaccuracy is unimportant as it is the relative position of 
mode and gain peak which determines the spectrum of 
the laser [l5]. If the model's length is increased by I, its 
resonant frequency will be given by 

f =  rnc/[2iie(L + 03 (8) 

61 = mie/ne (9) 

Equating eqns. 7 and 8, and when 1 and An are zero gives 

This can be substituted into eqns. 7 and 8 to give the 
required relationship between the model's change in 
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length, and the change in effective index two modes when the cavity is extended by one wave- 
length, as expected. 

4 A 1550 nm laser example 
(10) 

Sn, An An l = - - _ ~ = r _  
6n ne ne 

It is interesting to investigate the change in mode spacing 
in a similar manner. The theoretical mode spacing, f’, is 
given by 

A 1550 nm doub~e-heterojunction semiconductor laser 
has been chosen to demonstrate the method, as this is the 

f’ = c/[2L(he + Ah,)] (1 1) 
where Ahe is the induced change in group index. 

The model mode spacing,f:, is given by eqn. 8 with m 
unity 

f:, = c/[2he(L + I)] (12) 

With ASe, and 1 set to zero, the model is in exact agree- 
ment with theory, as expected. The model is also approx- 
imately correct if the change in group effective index, An, 
approximates to the change in effective index, Ane. 

The change in active layer index is assumed to be lin- 
early dependent upon carrier concentration, i.e. 

dn 
An = - (N - 

6N 

where 
N is the average carrier concentration in the cavity 
N,, is the threshold carrier concentration 
6n/6N is the rate of change of n with N 

Strictly, the average index along the cavity should be cal- 
culated by invoking the above equation at each model 
section along the cavity. However, for small index 
changes the above approximation is valid, and is also 
consistent with other models which neglect longitudinal 
effects [30, 311. It shall therefore be used in this paper. 

The factor 6n/6N can be obtained directly from experi- 
mental results or indirectly from the gain constant, g, the 
confinement factor, the resonant frequency, and the line- 
width enhancement factor, ci [ 171 

6n cic 6g 
6 N -  4nfSN 
_ -  

The linewidth enhancement factor used in the following 
analysis is 5.6 [34], which in general agrees with values 
given in Reference 17 for 1.55 pm devices. This will be 
used to obtain an analytical result for the linewidth of the 
laser. 

The consequences of undersampling, i.e. at less than 
the Nyquist sampling frequency, must be considered. 
Undersampling drastically reduces computing time, by 
increasing the iteration timestep, AT, and reducing the 
number of model sections, s. Two effects are: (a) decrease 
in the model’s bandwidth (b) a reduction in the accuracy 
in the Taylor series expansion of the gain curve term [lo]. 

An added effect, for the SA model, is to reduce the 
accuracy of the longitudinal mode positions. This is 
because the stub models an almost constant impedance, 
and its own impedance ranges from infinity to zero 
across the model’s bandwidth. As the impedances are 
matched at the resonance frequency,f, then the important 
modes close to this are accurately placed. However, at 
the band edges, the mode spacing becomes compressed ; 
as shown in Fig. 2, in which the longitudinal mode posi- 
tions are plotted against the added cavity length at each 
facet, for a 25 section model. This also shows the modes 
around the resonant frequency, the frequency of which 
has a linear dependence upon cavity length, and shifts by 
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optimum wavelength device for long haul systems using 
silica fibres [3]. It is in these systems that bandwidth is 
likely to be limited by fibre dispersion. Ideally, the laser 
should be single moded, however this is unlikely to be the 
case without the use of external cavities [35], coupled 
cavities [36], or a distributed feedback grating [37]. In 
this example, a multi-mode device with a 190 pm cavity 
is modelled. 

The material parameters are taken from a paper by 
Westbrook [34] and have been found from a InGaAsP 
ridge-waveguide structure. The modelled device is a 
stripe geometry, built-in waveguide structure that is 
assumed to have the same material parameters as the 
above device. Westbrook specifies the material gain thus 

9 = a,(N - No) - ~ 2 [ h v  - ( E o  + u,(N - N o ) ) ] 2  

where 
g is the material gain per unit length 
a, is dg/dN at the gain curve peak (2.7 x 10- l 6  cm2) 
No is the transparency carrier density (9 x lo” ~ m - ~ )  
a2 is the parabola width parameter 

a3 is dEo/dN the gain peak position carrier depen- 

This equation may be rearranged into the parabolic 

(4 x io5 eV-2m-’) 

dence (1.4 x cm3eV) 

form used by Buus [38] 

9 = a,(N - No)  

This is easily equated to the Lorentzian form used in the 
TLLM, by matching the gain at the gain peak, and at 
one mode away from it. This process yields the Q of the 
gain curve that is carrier dependent 

Q = J(6/2)flAf 

6 = a2wf)”[al(N - No11 

where 6 is Buus’ parameter given by 

In this analysis, the Q-factor is fixed at its threshold 
value. Also, the gain peak position carrier dependence is 
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set to zero, as it is the linewidth of the individual modes 
that is under investigation, and not the power distribu- 
tion amongst the modes. 

The cavity dimensions and reflectivities are typical for 
single-transverse mode devices, and are detailed in 
Table 1. The model parameters have been calculated with 
the equations given in [lo]. 

Table 1 : Modelled laser parameters 

Symbol Parameter Value Units 

A0 
L 
d 
W 

"e 

"e 
R 
0 
B 

N 

Us, 

r 

(I 

; 
AT 

b 
S 

Free space wavelength 
Cavity length 
Active region depth 
Active region width 
Group index 
Effective index 
Facet reflectivities 
Gain curve Q-factor 
dgldN 
Confinement factor 
Transparency Carrier Density 
Linewidth enhancement factor 
Internal attenuation factor 
Carrier lifetime 
Spontaneous emission coupling 
Model timestep 
Number of sections 
Band- num ber 

1.5 
190 
0.1 5 
5.00 
3.7 
3.4 
0.3 
22 
2.7 x 

0.3 

5.6 
15 

9.0 x 1017 

1.7 x 10-9 
1.0 x 10-4 
9.3733 x 10- 
25 
18 

cmz 

~ m - ~  

cm-' 
S 

l4 s 

A choice of 25 sections along the cavity gives a model- 
led bandwidth of 25 longitudinal modes and a gain curve 
accuracy of 98.5%. This is a compromise between model- 
ling speed and accuracy. The former being approximately 
25 minutes for 1 ns of laser time on a Whitechapel MG1 
Workstation, which is larger than that predicted in [IO], 
because of the inclusion of a carrier diffusion model 
based on Reference 39 into the TLLM. The latter may be 
judged from Figs. 2 and 3, which give an estimate of 

0 
0 1 f  2 3 L 5 

frequency, THz 

Gain curvefilter response over modelled bandwidth Fig. 3 

mode position accuracy and gain curve accuracy, respec- 
tively. The gain curve is accurate in the important region 
around the laser resonance, but is truncated because of 
the model's small bandwidth. The extra cavity length, 
required to model the refractive index variation, has been 
divided between the two facets. The length per facet has 
been set to one quarter of a wavelength at the threshold 
carrier density. 

The spontaneous emission coupling factor to the 
dominant mode, /?, has been calculated as approximately 
O.OOO1 [40]. This has been matched to the form used in 
the TLLM by matching the peak to mean power ratio of 
the TLLM to that of a multi-mode numerical solution of 
the rate equations. This gives 0.03 as the value of /? used 
in the TLLM. A more fundamental method of represent- 
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ing spontaneous emission in the model will be introduced 
in a future publication. 

The model was tested using a step in injection current 
of various values applied at zero time, with the initial 
carrier density set to 1.5 x 10'8cm-3, slightly above the 
threshold value. This transient will cause ringing of the 
laser power output, observed as a series of pulses. It is 
assumed that the injection current would be terminated 
soon after the first pulse, to achieve high transmission 
rates, although it may be of advantage to lengthen the 
pulse by modulation pulse shaping [40] when low bit 
rates are used. However, a detailed analysis and opti- 
misation of pulse shape is beyond the scope of this intro- 
ductory paper, and hence it is the first of a series of pulses 
that will be analysed. Thus, for each run, the iterations 
were continued until the first minimum after the first 
optical pulse. Fig. 4 shows the pulse shape for modula- 
tion currents of 20 mA to 150 mA giving pulse widths of 

33001 E 240 11 

"0 60 120 180 240 300 360 
time. ps 

Fig. 4 
a 20 mA; b 25 mA; c 30 mA; d 35 mA; e 40 mA;f45 mA; g 70 mA; h 150 mA 

Optical output pulse for various values of current 

10 to 95 ps. As expected, increasing the injection current 
decreases the delay time and the pulse width whilst the 
peak power output is increased. 

Fourier transforms of the modelled interval were then 
taken to obtain the spectra of the pulses, the resolution of 
these spectra being limited by the period over which they 
were taken. Fig. 5(a-d) shows selected spectra, all of 

0 : 0 2 0  f 0 4 0  060 0 8 0  100 

frequency, THz 

Fig. 5a Transform of pulse a 

which show the classical 'rabbit-ear' lineshape, of each 
longitudinal mode. A simple check of the maximum fre- 
quency deviation against the difference between 
maximum and minimum carrier densities during the 
optical pulse eqn. 7 shows that the model is quantitat- 
ively correct. For a qualitative assessment experimental 
results presented by: van der Ziel [22] and Hakki [23] 
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for GaAs devices, and Lin, Lee & Burrus [41] and Dutta 
et al. [24, 251 for InGaAsP devices are used. The fre- 
quency chirp in References 23 and 22 is a result of self 

0 0 2 0  f 0 4 0  0 6 0  0 8 0  100 
frequency, THz 

Fig. 56 Transform of pulse c 

i n 

0 020 f 0 4 0  060 0 8 0  100 
frequency, THz 

Fig. 5c Transform of pulse g 

frequency, THz 

Fig. 5d Transform of pulse h 

induced modulation (self-pulsation). In [24, 251 the chirp 
is caused by a sine-wave modulation of the injection 
current, whereas in Reference 41 picosecond pulse modu- 
lation is used. 

The multimode spectra of References 22 and 23 show 
good agreement with those presented herein. The fre- 
quency chirp of each mode is essentially of equal magni- 
tude [22]. The ear lengths of the modes around the 
gain-peak are nearly equal, whereas at the longer wave- 
length modes the long-wavelength ears are preferred, and 
conversely, the short wavelength ears are dominant at 
shorter wavelengths [23]. This effect is attributed to the 
gain curve position dependence on carrier density, in the 
above paper. However, as this dependence is not model- 
led, then some other mechanism must be responsible. 
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One possible explanation could be the influence of the 
gain curve filters’ phase shift or amplitude response on 
the resonance frequency. However, both these effects tend 
to reinforce the ear closest to the laser’s resonance. 
Another theory, providing the required answer, is that 
the farthest away ear collects more spontaneous emission 
power over a larger frequency range, as the Q of the 
cavity mode is smaller when less gain is present. 

100 50 30 20 IO 
pulse width FWHM , p s  

Fig. 6 
in Fig. 4 
The solid line is the analytical result for ri = 5.6 

Spectral width against pulse width for the drive currents given 

The sine-wave modulation results for a series of peak 
to peak currents [24, 251 show the expected trend of high 
chirp for large modulation. However, because of the inte- 
grating effect of the measurement system, the fine 
random-noise induced detail on the rabbit’s forehead is 
missing. Reference 24 also includes results for a GRTN- 
rod external cavity laser, which could be modelled with 
the TLLM by simulating the external cavity with a series 
of passive transmission lines. This is an obvious path to 
follow in the development of the model. Results for very 
short optical pulses (40 ps) from both long and short 
cavity lasers are given in Reference 41. Unfortunately, the 
resolution of the spectrometer is too poor to resolve the 
individual ears from the forehead, but it is good enough 
to show the asymmetry of the modes. The sense of the 
shift, i.e. blue to red during the pulse peak, agrees with 
the TLLM, and justifies the sign of a. 

It is interesting to compare the results with the ana- 
lytical formula (eqn. l )  obtained in References 7, 8, 21 for 
a Gaussian pulse. For this purpose, the linewidth of an 
individual mode (FWHM) is plotted against the optical 
pulsewidth (FWHM) in Fig. 5. Logarithmic scales are 
used so that lines of constant time-bandwidth product 
(TBP) may be plotted. The results show that the values of 
TBP are close to that predicted by (l), lying slightly 
below theory for low currents. This appears a useful 
result, as the analytical formula could be used in the cal- 
culation of dispersion in fibres but, is in fact worthless as 
the formula gives no indication of where the power lies 
within the mode spectrum. 
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5 Conciusions 

Experimental and theoretical results from other workers 
show that laser chirp is a significant contribution to the 
linewidth of near single-mode lasers, and therefore a 
good model of this is required when the dispersion in 
long-haul fibre systems is to be calculated. A transmis- 
sion line laser model including chirp has been developed 
to fulfill this requirment, which is reasonably fast and has 
suitable time-domain interfaces to both fibre and drive 
circuit models. Various methods of including chirping to 
the original TLLM were considered before the stub- 
attenuator model was chosen. This models index varia- 
tion by altering the effective length of the cavity by the 
use of transmission line stubs and attenuators to replace 
the end-facets. The stub and attenuator are then rep- 
resented by a simple scattering matrix. The modal posi- 
tions have been shown to be accurate near the laser’s 
resonance frequency, even when a reduced modelling 
bandwidth is used to minimise computing time. A model 
of a 1550 nm device under picosecond pulse modulation 
gives good results comparable with both experimental 
and analytical data, and shows the classic rabbit ear 
spectrum. The model may be particularly useful for cal- 
culating optimum injection current pulse shape for low 
linewidth. As the model is a close analogue to the real 
device it may be easily modified to cover external cavity 
and multi-contact lasers. Other future applications may 
be bistable laser amplifiers, and cleaved coupled-cavity 
devices. 
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