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Abstract: A versatile semiconductor laser model
has been developed by the addition of a
frequency-dependent gain model to the
transmission-line modelling (TLM) method. The
model provides a sampled optical output wave-
form for a modulated laser, from which output
spectra may be found. To minimise computing
time, a technique of sampling below the optical
frequency is introduced. The theoretical basis for
this model is considered, and the results gained for
a 300 /zm cavity heteroj unction laser are com-
pared with those given by the solution of the rate
equations.

1 Introduction

The operation of a semiconductor laser provides an
extremely complex modelling problem. A complete model
would include the solution of optical field and carrier dif-
fusion equations in a three-dimensional (3D) dielectric
waveguide whose dimensions may be carrier dependent.
The dielectric's refractive index would include real and
imaginary components, both being functions of wave-
length and carrier density. Also, as the semiconductor
laser's major role is as a modulated source in optical
communications, it is necessary to have a dynamic rather
than static model of its operation.

The limitation of computing power has made the
above model impossible to realise [1]. However, many
models are available, all of which concentrate on one
aspect of the laser's operation, for example transverse
field and carrier distribution [2], or laser linewidth [3].
To design a laser, the individual models must be spliced
together, which may be a long-winded process and prone
to error.

This paper introduces a new type of semiconductor
laser model based on the transmission-line modelling
(TLM) method. This method has been used extensively to
model both field and diffusion problems [4, 5] and pro-
duces stable, explicit and easy-to-understand routines.
This model is not intended to be a complete model of the
lasing process, but the approach is designed to be adapt-
able to individual requirements and novel device struc-
tures. This paper serves as an introduction to the
technique and, for comparison with other techniques,
concentrates on the modelling of transient spectra.
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The evolution of the laser spectrum under modulation
is required to determine the dispersion in fibres and thus
maximise the bandwidth-length product [6]. Many
models concentrate on this feature, and particularly on
the increase in linewidth under modulation. A common
approach is to solve a set of rate equations for photon
and carrier density, using one rate equation per longitu-
dinal mode [7-10]. The evolution of the relative mode
powers during a modulation pulse is then found using
some form of numerical solution.

The fundamental difference between the transmission-
line laser model (TLLM) and the above rate-equation
models is that the TLLM discretises the rate equations in
space rather than wavelength. This is achieved by using a
field model for the laser cavity to deal with the wave-
length dependence of the gain. It will be shown that the
number of sections required equals the number of longi-
tudinal modes to be modelled. One advantage is that
spatial inhomogeneities are included without adding
extra rate equations. Another advantage is that the wave-
length spectrum is continuous, allowing longitudinal
modes to fractionally shift, as in the real device [11].

Besides the output spectrum, another important device
parameter is its input impedance. This is required for the
design of drive electronics and to assess the effects of
parasitic components. The equivalent-circuit class of
models, reviewed in Reference 12, allows the laser pro-
cesses to be represented by a network of standard com-
ponents. This may then be appended to models of the
device package and drive circuit to obtain a complete
transmitter model.

In comparison, the availability of a TLM for lumped
components [13] allows the TLLM to include external
and parasitic components, justifying the TLLM as an
equivalent-circuit model. The important difference is that
the TLLM includes a cavity model. This allows novel
structures to be investigated and, more fundamentally,
provides the optical waveform, whereas the others only
provide the power envelope.

The following Sections aim to describe the additions
required to the TLM method for waveguide problems to
form a laser model. The technique will then be tested
against other models by using a 300 nm stripe GaAlAs
laser as an example.

2 Optical cavity

The basis of a semiconductor laser is a guiding optical
cavity filled with a medium which provides optical gain
at the lasing frequency and whose end facets are mirrored
to provide positive optical feedback [14]. The guiding
may be provided by a built-in refractive-index step,
known as 'index guiding', or by modulation of the refrac-
tive index by current injection, 'gain guiding'. The latter
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is difficult to model as the cavity dimensions are a func-
tion of local carrier concentration. The former, however,
has fixed cavity dimensions, although refractive-index
modulation may occur, and so the waveguide dispersion
and confinement can be considered as being constant.
Thus, it is possible to reduce the model to one dimension,
along the cavity. This type of laser is considered in this
paper.

The co-ordinate system is shown in Fig. 1 together
with cavity dimensions, which are detailed later in the
paper.

injection
current

stripe

optical cavity

surrounding
guide material

Fig. 1 Stripe geometry semiconductor laser with built-in waveguiding

The optical wave is usually thought of as propagating
as a TE10 mode, with its electric field Ey(x, y, z, t) in the
^-direction. For a one-dimensional (ID) model the x and
y dependence have to be removed. This is achieved by
averaging the field over all x and y and equating its
power to that of a field E(z, t) over an area wd, where w is
the stripe width and d is the guide thickness:

|E(z, t)\2=— Ey(x, y, z, t)|2 dx dy (1)
- oo J - oo

The magnitude of E(z, t) may be related to the photon
density S(z, t) in the cavity by noting that the power
density across our chosen cavity area equals the energy
density multiplied by the group velocity. Thus:

(2)

Where h - Planck's constant (6.626 x 10"34 Js)
c = vacuum velocity of light (3 x 1010 cms"1)

Xo — laser's free-space wavelength
he — effective group index

Zp is the transverse wave impedance for a TE mode, in a
guide of effective index ne [15], given by:

Zp = he \20nlnl (3)

The propagation of E{z, t) along the cavity will now be
modelled using the TLM method.

3 Representation of optical electric field

The longitudinal variation of optical field is modelled by
using the standard TLM method for waveguides, intro-
duced by Johns and Beurle [16], reduced to one dimen-
sion. The cavity, length L, is split into s sections each of
length AL. For subNyquist operation AL must be less
than one half of the group wavelength Xgr. This condition
will be used, for simplicity, to develop the TLLM. The
modelling speed may be greatly enhanced by sampling
below the Nyquist limit [17], and the necessary modifi-
cations are described in Section 8.

The group wavelength is related to the free-space
wavelength Xo by

Thus, the minimum number of sections is given by

s =
2Lhe

(4)

(5)

The TLM method represents each section by a transmis-
sion line, the voltage on the line representing, in this case,
the transverse electric field in the cavity. To discretise
time, voltage pulses travel along the sections at intervals
of AT. The sections are jointed at nodes, at which inci-
dent voltage pulses will be scattered to become reflected
pulses out of the nodes. AT is such that a reflected pulse
out of one node will become an incident pulse on the
adjacent node at the next iteration, i.e.

AT =
ALho

(6)

The phase velocity along the transmission lines is used to
model the group velocity in the cavity. This is because
the group velocity is required to give the correct longitu-
dinal mode spacing, and the TLM cavity model is disper-
sionless, i.e. its group velocity equals its phase velocity.
This condition is also required when the solution of the
rate equations is considered.

To model refractive-index changes along the cavity,
the velocity along the transmission line may be altered by
including capacitive transmission-line stubs at the con-
nection nodes [18]. These serve to alter the phase veloc-
ity along the line. The study of these, and the modelling
of laser chirp, is beyond the scope of this paper.

The end facets are simply modelled by using
unmatched termination resistors at the end nodes of the
cavity. It is assumed that there is zero back scatter into
the cavity, for example from the fibre end face. However,
this may be easily modelled by extending the
tranmission-line sections beyond the cavity. Buus [19]
provides a simple analytical method of determining the
reflectance of uncoated end facets.

4 Representation of gain curve

The ID cavity described in Section 3 can only model
changes in the real part of the refractive index along the
cavity length. The frequency response of the cavity could
be found by injecting an impulse into one node and
taking a Fourier transform of the resulting stream of
pulses at a chosen node. The response for a homogeneous
cavity would be composed of equally spaced 'longitudinal
modes' of equal amplitude.

The above model takes no account of the imaginary
part of the refractive index, which results in materials
gain or loss. This term is wavelength dependent and so
serves to select one or more of the longitudinal modes to
become the dominant laser mode. Thus some form of
wavelength-dependent amplification is required in the
cavity.

The magnitude of this amplification may be found by
using the rate equation for photon density, originally
derived by Statz and DeMars [20]. The facet reflectivity
terms are neglected as their contribution is modelled by
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unmatched terminations. The rate equation becomes

dS cS

at ne
- asc) + — (7)

Where S = photon density
F = confinement factor
g = spatial gain coefficient

asc = internal loss coefficient
P = spontaneous coupling coefficient
TS = carrier lifetime
N = carrier concentration

Neglecting the spontaneous emission term for the time
being, consider the increase in photon density between
two nodes AL apart. This may be found using eqns. 6
and 7:

(8)

As the magnitude of the transverse electric field E is pro-
portional to the square root of photon density, assuming
a monochromatic beam, then

^ = exp M{Tg - asc)/2 (9)

The internal loss term is assumed to be frequency inde-
pendent and may be represented by an attenuator with
an attenuation of exp (asc AL/2). The remaining exponen-
tial may be expanded to a Taylor series:

= 1 +
2 )

exp (aAL/2) (10)

This equation suggests the model shown in Fig. 2. The
wavelength dependence of the gain curve may be rep-

attenuator

Fig. 2 Gain curve model

resented by a passive filter, which is discussed in the fol-
lowing Section.

5 Frequency dependence of gain curve

The gain curve may be found theoretically, e.g. Stern
[21], Mendoza et al. [22], or experimentally, e.g. Henry
et al. [23]. It is usually given in the form of a series of
frequency-dependent curves, each for a certain carrier
concentration. The model described in this paper approx-
imates the curve to a Lorentzian form so that a simple
second-order bandpass filter may be used. This approx-
imation has been used by Lau and Yariv [24] as a good
fit is obtained at the peak of the gain curve, around
which most of the laser power is produced.

The inductor and capacitor, required for the second-
order filter, are modelled by using transmission-line
stubs. These stubs are joined with the resistor at a node.
This technique is described by Johns and O'Brien [13].
The stubs are made of such a length that a pulse reflected
into them will become an incident pulse at the node one
time step later. By comparing the input impedance of an
open-circuited transmission-line stub with that of a
capacitor value C, it can be shown that the capacitor
may be represented by a stub of impedance Zc, where

AT
(11)

Similarly, a short-circuited stub of impedance ZL may
represent an inductor value L:

ZLAT
L = (12)

These approximations hold while the time step is much
less than the period of the wave. For computational
speed reasons, this is not the case with our model. A
better method of calculating the stub impedances is
developed by considering the input impedances of the
stubs, which are, for the capacitive stub:

Zic = ZJj tan (n.AT . c/X0)

and for the inductive stub:

ZiL = ZLj tan {n. A T . c/X0)

(13)

(14)

At resonance, the parallel combination of stub admit-
tance is zero, giving a relation between resonant wave-
length and stub impedances:

JZJZL = tan (n.AT . c/A0) (15)

This relation shows the existence of higher-order pass-
bands (argument of tan > 2n) which can be used when
the time step is increased beyond the Nyquist sampling
theorem limit.

The Q-factor of a parallel RLC filter, whose R value is
unity, is given by

Q = (16)

The Q-factor of the TLM stub filter can be found by sub-
stituting for L and C:

Q = Ily/Zjzi (17)

An amplifier, gain A, is used to define the gain at reson-
ance of the network shown in Fig. 2. For a laser the gain
is a function of excess carrier concentration and may be
approximated to [1]

g = B(N-Ntr) (18)

Where B = spatial gain per unit carrier density
N = carrier density

Ntr = carrier density for transparency

The gain of the amplifier is therefore

A = ^ TB(N - Ntr) (19)

The filter is now fully defined. Two filter 'modules' are
required between adjacent nodes, one for each pulse
direction. This is a requirement of the conservation of
photon momentum, i.e. photons created by stimulated
emission are emitted in the same mode and in the same
phase as the photon stimulating the transition.

It should be noted that the filter introduces a phase
shift to the wave. This is related to the amplitude
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response by the Kramers-Kronig [25] relations. These
also relate gain and refractive index in the laser, and so it
can be shown that the filter serves a dual purpose, i.e. if
the gain curve is accurately modelled, the refractive-index
variations will also be modelled. For example, this effect
may be used to model frequency chirping [11].

6 Modelling spontaneous emission

The last term in the photon density rate equation (eqn. 7)
covers the photons added by spontaneous emission. The
rate of photon creation is proportional to the carrier con-
centration N, the effective cavity volume wdL and the
inverse of carrier lifetime TS . If the mean energy of the
photons is hfres, where fres = c/X0, then the spontaneous
emission power becomes

(20)

The spontaneous emission coupling coefficient f$ is
included as not all photons thus created have the correct
wave vector to be coupled to the guided wave.

This power may be injected into the model at each
section or, to save on computing time, may be localised
to one section. This approach may be justified if the
spontaneous emission spectra are measured assuming a
localised source [26].

As spontaneous emission is a random process, a
random noise source is used as a model. To obtain the
correct noise spectrum, a Gaussian (normal) distribution
discrete source, with zero mean, is filtered by a second-
order RLC filter similar to that used for the gain curve
model.

The RMS output of the filtered source is equal to its
variance multiplied by the effective bandwidth of the
filter over the Nyquist bandwidth, i.e.

E* = <722 (21)

The effective bandwidth Be is found by integration of the
filter's response over all positive frequencies. The RLC
filter has a Lorentzian response H(co), where

(22)

Where co is the angular frequency and a>0 equals 2nfres.
The effective bandwidth is a>0/4Q Hz. If the filtered
source is used as a voltage source in the model, represent-
ing field in the laser cavity, then the power of the source
becomes

a>0<72 ATwd

2QZP
(23)

Equating this power with the spontaneous emission
power to find the required variance gives

PNhLQZt

n A7V
(24)

The voltage output of the filter is simply added to the
voltage on the transmission line, at one node, in one
wave direction. The carrier concentration N in the cavity
should be calculated from the mean concentration of all
the sections.

As with the gain curve, the spontaneous emission spec-
trum is a function of carrier concentration. The central
resonance of the filter could be made a function of con-
centration to cater for this effect.

7 Modelling the rate equation for carrier
concentration

The preceding Sections in this paper have been con-
cerned with the solution of the rate equation for photon
density. This included terms for carrier concentration.
This Section of the paper involves the modelling of the
rate equation for carrier concentration so that the two
equations may be solved simultaneously.

The rate equation for carrier concentration may be
written

dN j N c

dt ed TC no
(25)

Where j is the injection current density and e is the
charge of an electron.

To enable longitudinal carrier density variation to be
modelled, an independent rate equation is used for each
model section, s may be found from the reflected voltages
in the cavity model by using eqn. 2 and noting that
voltage is equivalent to the transverse effective electric
field.

An equivalent circuit may be constructed where
voltage represents carrier density, as in Fig. 3. The differ-
ential equation for this is

dQ V
-±L = J _ _ /
ul K.-,

(26)

carrier
density

injection

Fig. 3 Carrier rate-equation model

X. spontaneous
emission

For the capacitor Q = CV. For convenience C = 1.
Equating coefficients gives

/ = —
in i — j

ed
= T,

Istim = -
9*0

(27)

(28)

(29)

As before, a TLM stub is used to model the capacitor.
The effect of stray components is negligible as the time
constant of this circuit is far longer than the time step.
The complete photon and carrier model is shown in
Fig. 4.

Diffusion along the cavity has so far been neglected as
it is negligible for lasers with uncoated (high reflectivity)
facets. If required, diffusion may be modelled by linking
the model sections with resistors. An explicit routine,
using link transmission-line sections, is suggested by
Johns [27].

8 Sampling theory

The Nyquist theorem [17] states that if a signal, band-
limited to B Hz, is sampled at a rate of 2B samples per
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second, the signal may be recovered without loss of infor-
mation. So far a sampling rate of at least twice the
optical frequency fres has been used, allowing signals from
DC to the laser's optical frequency to be recovered.

With this method much of the available spectrum
remains unused, as the laser's spectrum is very narrow
(~1012Hz) compared with its operating frequency
(~1014Hz). This fact suggests that the sampling rate
may be lowered without loss of information.

one section AL, AT

photon
model

carrier
model

frequency-
selective
amplifiers

I

carrier
diffusion

1 1
injection
current

Fig. 4 ID transmission-line model of a semiconductor laser

Consider the laser output to lie within a band f(min)
to f(max). Let the sampling rate be f(samp). The band
will be replicated around DC and all harmonics of
f{samp). To reduce modelling time f(samp) has to be
minimised without information loss in the band. This is
achieved when/(min) is replicated at zero frequency (DC),
by sampling atf(min)/b, where b is an integer and will be
referred to as the band number. This replication is shown
in Fig. 5. To prevent overlapping of the bands, f(samp)

power

f(samp) 2f(samp)
f (max)

-f(min)
f(min)

frequency

f(max)

Fig. 5 Replication of a band f{min) to f(max) at zero to
f(max) —f(min)

must be greater than 2(f(max) —f(miri)). Combining
these two limits provides a maximum value for the band
number:

b ^f(min)/(2f(max) - 2f(min)) (30)

Owing to the nature of the model, an integer number of
sections s is required along the cavity. This puts a con-
straint on f(min), which has to be chosen such that

f(min) = sbc/(Lfie)
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Similarly/(wax) is given by

fimax) = s(b + l/2)c/(Lhe) (32)

Obviously f(min) is chosen to be below the region of
interest, and/(max) is chosen to be above it. It is inter-
esting to note that/(mm) and/(max) both fall on longitu-
dinal modes, which are spaced at c/2Lhe (neglecting
material dispersion), and that the number of sections

scattering
node

unmatched termination
/representing end facet

equals the number of longitudinal modes that will be
modelled.

There are two other factors governing the choice of s.
These are the accuracy of the Taylor series expansion
and the accuracy of the diffusion model. First, let us con-
sider the Taylor series expansion of the gain curve. In the
steady state, the material gain has to compensate for
both mirror loss and material absorption [28]. If mirror
loss is considered dominant and has a value R for both
mirrors, the spatial gain coefficient multiplied by the con-
finement factor becomes

gT = - i In (R) (33)

This figure is then substituted into eqn. 9 to find the
increase in field per section. This is then raised to the
power 2s to find the model gain over the entire cavity
length, giving

,2s

(34)

The model gain over the required gain (l/R) against
reflectivity is plotted in Fig. 6.

It should be noted that in the dynamic situation the
peak gain can be up to five times the steady-state value,
which gives a considerably larger error. This results in an
increased turn-on time owing to the reduced gain at high
carrier density levels.

Secondly, the section length should be kept below the
diffusion length for accurate modelling of spatial hole
burning effects [1]. As this paper considers lasers with
high-reflectivity facets, the carrier concentration variation

285



along the cavity is small, and hence diffusion effects have
been ignored. However, if the model is to be used for
low-reflectivity situations, such as with laser amplifiers,

100r

95

90

80

0.2 0.3

mirror reflectivity

0.5

Fig. 6 Accuracy of Taylor series expansion

the diffusion model, and hence the choice of s, require
careful consideration.

Once the band number and number of sections have
been determined, the following model parameters have to
be recalculated:

(a) Gain curve filters: The bandwidth of the curve is to
be kept constant so that the same number of longitudinal
modes lie under it. This implies that the '(?' of the filters
has to be decreased as Q = resonant frequency/
bandwidth. Formally, if Q(gc) is the Q-value of the gain
curve and Q(fil) is the Q-value of the stub filters, then

Q(gc) = Q(fil)(l - bf (samp)/f(res)) (35)

(b) Fourier transform: The resolution AF of an r-point
discrete Fourier transform will be

AF = f(samp)/r (36)

For the individual modes to be resolved, the resolution of
the transform has to be made less than the longitudinal
mode spacing. By relating the mode spacing to the
number of sections it can be shown that

r ^ 2s (37)

The transform is only valid in the range f(min) to f (max).

(c) All occurrences of AL and AT: In every case, the
newly calculated section length and time step should be
substituted into the original equations. These are given
by

AL = L/s

AT = 1 Id (samp)

Modelling speed

(38)

(39)

It is useful to put a measure on the speed improvement
gained by sampling below the Nyquist rate and also to
be able to compare the TLLM method with other laser
models in terms of speed. In this Section the modelling of
a 300 /im laser operating at 850 nm with a group index
of four will be used as a benchmark. If sampling above

the Nyquist rate is used, eqn. 5 gives the minimum
number of sections as 3000.

A useful measure of computations required per nano-
second of laser time is 10~9 s/AT, the number of node
iterations per nanosecond. Thus, 2000 million node iter-
ations are required for a nanosecond of laser time. A
Whitechapel MG1 workstation takes about 1.4 ms per
node iteration, giving a computation time of 800 h/ns.

For subNyquist sampling the modelling time is more
realistic. If s is the number of sections chosen, the number
of node iterations per ananosecond (nins) becomes

nins =
s2c x 10~9

(40)

Our example, using 100 sections, requires 2.5 million
node iterations per nanosecond, giving a modelling time
of around 60 minutes. A multimode rate-equation model
[7] with an equal bandwidth and an iteration time step
of 0.5 ps takes 1.6 minutes. However, if spatial variations
are to be included, the computing time will be increased
in proportion to the number of sections, and for 100 sec-
tions the TLM model is more than twice as fast as the
rate-equation model.

10 Modelling transient response of a laser

The TLM model is primarily a dynamic model, i.e. the
laser is being modulated. However, it may be used as a
static model if the injection current is kept constant and
the model is allowed to reach a steady state. To minimise
the settling time, the initial value of carrier concentration
can be set to the threshold carrier concentration.

The dynamic response may be found by applying a
step (or otherwise) input of injection current. If the step is
from a nonzero current value, e.g. the laser is biased
below threshold, then the model should strictly be
allowed to stabilise before the step is applied.

The electric field may be sampled at any point along
the model. However, it is usually sampled just inside the
end facets. The result will be a series of impulses, one per
iteration. The instantaneous output power is simply
given by the instantaneous power density incident on the
facet multiplied by (1 — R), that is:

(41)

The average output power may be found by averaging
over a number of wave periods, noting that the longitudi-
nal modes will beat at their difference frequency.

11 Comparing the model to a simple solution of
the rate equations

To verify the operation of the model, a hypothetical laser
was analysed using TLM, a numerical solution of the
rate equations [7] and a small signal analysis of the rate
equations [28, 29]. Table 1 shows the laser parameters.
The assumptions are as follows:

(i) zero carrier diffusion
(ii) homogeneous transverse wave impedance

(iii) spontaneous emission spectrum equals gain spec-
trum

(iv) above spectra independent of carrier concentration
(v) carrier lifetime independent of carrier concentra-

tion

The model parameters were then calculated by the use of
the equations derived in this paper and are shown in
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Table 1: Modelled laser parameters

Symbol

L

R,,R2
Q
BV

N

d
w
T,
a.c
P

Parameter

Free-space wavelength
Cavity length
Group index
Effective index
Facet reflectivities
Gain curve Q-factor
Gain constant *
confinement factor
Transparency
carrier density
Active region depth
Stripe width
Carrier lifetime
Internal attentuation
Spontaneous emission
coupling factor

Value

850 nm
300 //m
4
3.5
0.3
100

1.5*10- 1 6 cm 2

1.5* io1 8cm-3

0.1 fjvn
5//m
4 ns
10 cm-1

0.01

Table 2. The frequency response of one filter section was

Table 2: Model parameters

Symbol Parameter value

b
s
f(samp)
A f
AZ.
Q(new)
zc
zL
zp
An
R
r
A f
A/I

Band number
Actual number of sections
Sampling frequency
Timestep per iteration
Section length
Modified Q-factor
Impedance of stub capacitor
Impedance of stub inductor
Cavity wave impedance
Attentuation per section
Spontaneous emission resistor
Number of transform points
Transform resolution
Transform resolution

14
100
2.5 * 1 0 1 3 Hz
40 fs
3.0 //m
0.83333
4.43513 O
32.46803 Q
123.1 O
0.998501
4 * 1 0 - 9 O
1024
25 GHz
0.06 nm

checked against the expected Lorentzian response, and
both are shown in Fig. 7. As the modelled band has been
translated down in frequency by f(min), the response falls
to zero at this frequency. However, the filter response is a
good fit at the important resonance peak. The model was
then tested under a number of conditions, the results of
which are analysed as follows:

11.1 Interaction of photon and carrier populations
The interaction of photon and carrier concentrations for
a step increase in injection current to 44 mA has been
modelled using TLM and a multimode numerical solu-
tion to the rate equations. The results are shown in Fig. 8
which also includes a plot of RMS linewidth calculated
from the former model. Both models use the parameters
in Table 1, except that the latter's spontaneous emission
coupling factor has been reduced to 0.0001 to achieve
matching between the oscillation amplitudes. This dis-
crepancy is due to the definitions of the coupling factors.
The TLM model splits the spontaneous emission power
multiplied by the coupling factor over the lasing band-
width; whereas the rate-equation model splits the
coupled power between the modes. Thus more power
reaches the modes in the latter situation, giving greater
damping of the oscillations.

When the current step is applied, the carrier concen-
tration rises from the transparency value, increasing
material gain from zero. The power output, which is ini-
tially dominated by spontaneous emission noise, rises
at an increasing rate as stimulated emission becomes
dominant. This transition can also be seen by comparing
Figs. 9a and 9b, the spectra at 0.22 and 0.34 ns. The

former shows a broadband output, comprising multiple
longitudinal modes within the spontaneous emission
envelope. The latter shows a narrower spectrum com-
posed of four distinct modes, with little noise power in
between them.

1.0r

0.1 -

3.50 3.55 3.60
frequency, 10 Hz

Fig. 7 TLM stub filter and Lorentzian filter responses

TLM stub filter response
O O O Lorentzian response

-12.0*7

0.6 0.8
time,ns

1.5

Fig. 8 Transient response of a 300 fim stripe laser driven with a
current step of 44 mA

TLM model results
A A A multimode rate-equation results
O O O linewidth

At around 0.35 ns the stimulated recombination rate
becomes greater than the injection rate, resulting in a
dramatic decrease in carrier concentration to below the
threshold required to maintain a constant photon
density. The output power falls, allowing carrier concen-
tration to rise. The interaction of carrier and photon den-
sities continues until a near steady state is obtained. The
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laser now operates with two dominant modes, whose
relative amplitudes remain constant, as shown in Figs. 9c
and 9d; the spectra at 0.5 and 1 ns. The linewidth of each
mode is now less than the transform resolution, and the
RMS linewidth falls below 0.5 nm.

gain curve peak

frequency (longitudinal modes marked)

12 Discussion

The results given in the preceding Section show that the
concept and derivation of the ID transmission line laser
model (TLLM) are sound. The model is able to predict
the evolution of output spectra during a transient and

A
gain curve peak

frequency

b

gain curve peak
frequency

c

Fig. 9 Modelled spectra during the turn-on transient shown in Fig. 8

a 0.22 ns b 0.34 ns c 0.5 ns d 1 ns

11.2 Power output, delay time and resonance
frequency against drive current

A small signal analysis of the rate equations provides
equations for resonance frequency, turn-on delay and
output power [28]. These are compared with the model
at a number of drive currents, as shown in Fig. 10.

The power output plots show a good agreement
between theory and the model. The uncertainty in power
at low levels is due to the model never reaching a (near)
steady state. The resonance frequency has been compared
with eqn. 4 in Reference 29 and shows that the model
gives a consistently low result. This is thought to be due
to the large signal nature of the model.

The turn-on delay has been defined as the time for the
carrier concentration to rise from transparency level to
threshold level, the same as Thompson's definition [30]
of delay time, and is consistent with theory.

The threshold carrier density, which is reached after
the transient, has also been examined. In all cases this is
within 1 % of the expected value. Thus the model appears
to be correct in terms of the transient response.

gain curve peak
frequency

d

can also cope with inhomogeneous carrier concentration
along the cavity length, provided that diffusion is insig-
nificant.

The model is a useful design tool in its present form.
However, other multiple rate-equation models [7-10] are
able to achieve the same type of results. The justification
for this model is that because it is such a close analogue
to the laser device, it may be easily modified and
enhanced. For example, the next logical addition would
be a diffusion model. This would allow the modelling of
low facet reflectivity lasers, which have a large photon
density distribution along them. Indeed, the modelling of
laser amplifiers is then simply a matter of injecting an
optical signal into the model.

The above variations have already been tested by the
author, but were felt to be beyond the scope of this intro-
ductory paper. There are others, one being the extension
of the model to two dimensions. Such a model could
display transverse, as well as longitudinal, mode hopping
and would be essential for gain guided lasers. It would
also provide the field distribution across the cavity,
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without having to resort to an effective field/index
method.

The complexity of any model is limited by computa-
tion time. This model has the distinct advantage that
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Fig. 10 Output power, resonance frequency and turn-on delay against
injection current

output power theory, + model
resonance frequency theory, V model
turn-on delay theory, A model

accuracy may be compromised for speed in a predictable
manner. This allows the model to be used for rough pre-
dictions, as well as for accurate analysis. This feature is
invaluable in a computer-aided design package, where a
number of designs may be quickly compared before one
is finally evaluated. For example, the model may be used
with very few sections if the bandwidth of the gain peak
is made sufficiently narrow. The model is then effectively
reduced to a single-frequency rate-equation model.

13 Conclusion

Frequency-selective gain networks have been added to a
ID transmission-line model (TLM) of the field in a laser
cavity to produce a transmission-line laser model
(TLLM). A technique of sampling below the optical fre-
quency has been introduced to allow a 1 ns transient to
be modelled in a realistic time. The results show the evol-
ution of output spectra and are in good agreement with
those from a small signal analysis of the rate equations.
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