A Delay-Constrained Protocol with Adaptive Mode Selection for Bidirectional Relay Networks

Vahid Jamali†, Nikola Zlatanov‡, and Robert Schober†
† Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
‡ University of British Columbia (UBC), Vancouver, Canada

Abstract—In this paper, we consider a bidirectional relay network with half-duplex nodes and block fading where the nodes transmit with a fixed transmission rate. Thereby, user 1 and user 2 exchange information only via a relay node, i.e., a direct link between both users is not present. Recently in [1], it was shown that a considerable gain in terms of sum throughput can be obtained in bidirectional relaying by optimally selecting the transmission modes or, equivalently, the states of the nodes, i.e., the transmit, the receive, and the silent states, in each time slot based on the qualities of the involved links. To enable adaptive transmission mode selection, the relay has to be equipped with two buffers for storage of the data received from the two users. However, the protocol proposed in [1] was delay-unconstrained and provides an upper bound for the performance of practical delay-constrained protocols. In this paper, we propose a heuristic but efficient delay-constrained protocol which can approach the performance upper bound reported in [1]. Moreover, the average throughput and delay of the protocol are evaluated by analyzing the Markov chain of the states of the queues.

I. INTRODUCTION

In the bidirectional relay network, two users exchange information via a relay node. For this simple and fundamental network architecture, several protocols have been proposed for practical half-duplex nodes, i.e., nodes that cannot transmit and receive at the same time and in the same frequency band. The traditional two-way relaying protocol, the time division broadcast (TDBC) protocol [2], and the multiple access broadcast (MABC) protocol [3] are the most widely used protocols for the bidirectional relay channel. For a comprehensive overview of protocols proposed for the bidirectional relay channel, we refer to [2]–[5], and references therein. Notice that the protocols in [2]–[5] were derived for adaptive rate transmission which requires the availability of channel state information (CSI) at all transmitting nodes and the capability of using appropriate coding and modulation schemes such that the transmitters can perfectly adapt their transmission rates to the channel capacity. For the case when CSI is not available at all transmitting nodes and/or only one coding and modulation scheme can be used, protocols designed for adaptive rate transmission are not applicable. Instead, the transmitters have to transmit with a fixed rate regardless of the CSI of the involved links. For fixed rate transmission, not the achievable rates but other performance metrics such as throughput and outage probability are relevant [1], [6].

Most of the previous bidirectional relaying protocols assume a prefixed schedule for the nodes to transmit, receive, and be silent, i.e., a fixed schedule for using the possible transmission modes listed in Table I. In [1], a new protocol for fixed rate transmission is proposed which, based on the qualities of the involved links, selects the optimal transmission mode in each time slot such that the sum throughput is maximized. However, the protocol proposed in [1] does not impose any constraint on the average delays of the information flows and may lead to unlimited average delays. Nevertheless, for most practical applications, it is required that the end-to-end delay does not exceed a certain tolerable limit. Hence, in this paper, we propose a delay-constrained protocol which can guarantee a certain target average delay for each information flow. In particular, the proposed delay-constrained protocol does not only take into account the qualities of the links for adaptive mode selection, but also the states of the queues at the buffers. Thereby, the proposed protocol avoids excessive delays by effectively forcing the relay to transmit if the amount of information in the queues exceeds a certain threshold.

The proposed protocol can operate in two modes: i) a delay-efficient mode for stringent average delay requirements, and ii) a throughput-efficient mode for less stringent average delay requirements. For performance analysis of the proposed protocol, we present a general framework for obtaining the average throughput and the average delay of each information flow based on a Markov chain analysis of the states of the queues at the buffers. The performance analysis reveals that the signal-to-noise ratio (SNR) gap between the outage probability of the proposed protocol in the delay-efficient mode and that of the delay-unconstrained protocol in [1] is at most 3 dB in the high SNR regime. Furthermore, the SNR gap between the proposed protocol in the throughput-efficient mode and the delay-unconstrained protocol vanishes at high SNRs.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we introduce the system model and present some preliminaries for development of the proposed protocol.

A. System Model

We consider a bidirectional relay network comprised of two users and a relay. There is no direct link between the users, and thus, user 1 and user 2 communicate with each other only through the relay node, see Fig. 1. All three nodes in the network are assumed to be half-duplex. Moreover, the user-to-relay and relay-to-user channels are impaired by additive white Gaussian noise (AWGN) and block fading, i.e., the channel coefficients are constant during one time slot and change independently from one time slot to the next. Let \(h_1(i) \) and \(h_2(i) \) denote the channel fading coefficients between user 1 and the relay and between user 2 and the relay in the \(i \)-th time slot.

Table I

<table>
<thead>
<tr>
<th>Transmission Mode</th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
<th>M₄</th>
<th>M₅</th>
<th>M₆</th>
<th>M₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>T</td>
<td>S</td>
<td>T</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>User 2</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Relay</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>S</td>
</tr>
</tbody>
</table>
time slot, respectively. Fading gains $|h_1(i)|^2$ and $|h_2(i)|^2$ are assumed to be ergodic and stationary random processes with means $\Omega_1 = E\{|h_1(i)|^2\}$ and $\Omega_2 = E\{|h_2(i)|^2\}$, respectively, where $E\{\cdot\}$ denotes expectation. Moreover, $\gamma_1(i) = \gamma|h_1(i)|^2$ and $\gamma_2(i) = \gamma|h_2(i)|^2$ denote the instantaneous SNRs of the links between user 1 and the relay and user 2 and the relay, respectively, where $\gamma = \frac{P}{\sigma_n^2}$ is the transmit SNR of the nodes, P is the transmit power of the nodes, and σ_n^2 is the noise variance at the receivers. We also assume that all nodes transmit one data packet in each time slot with fixed rate R_0.

B. Instantaneous SNR and Queue Regions

Let B_1 and B_2 denote two buffers at the relay which store the information received from user 1 and user 2, respectively. Moreover, $P_j(i)$, $j \in \{1, 2\}$, $P_j = 0, \ldots, P_{j_{\text{max}}}$, denotes the number of packets available in buffer B_j at the end of the i-th time slot. In order to avoid information loss, transmission mode M_k is selected only if 1) the information can be decoded successfully at the receiver(s) based on the qualities of the respective links, and 2) there is enough space available in the respective buffer(s) to store data for modes M_1, M_2, and M_3, or there is enough information available in the respective buffer(s) to transmit for modes M_4, M_5, and M_6. Otherwise, the silent mode M_7 is selected.

Fig. 2 a) illustrates the five SNR regions, R_m, $m = 1, \ldots, 5$, for the instantaneous link SNRs, $\gamma(i) = [\gamma_1(i), \gamma_2(i)]$, that can be distinguished based on the decodability of information at the receivers. The boundaries of the SNR regions in Fig. 2 a) are defined by $\gamma_{\text{thr}} = 2R_0 - 1$ and $\gamma_{\text{num}} = 2^R_0 - 1$. Moreover, for future reference, let K_{R_m}, $m = 1, \ldots, 5$ denote the set of the indices of the candidate transmission modes in SNR region R_m, i.e., $K_{R_1} = \{1, \ldots, 7\}$, $K_{R_2} = \{1, 2, 4, 5, 6, 7\}$, $K_{R_3} = \{1, 4, 7\}$, $K_{R_4} = \{2, 5, 7\}$, $K_{R_5} = \{7\}$. On the other hand, in Fig. 2 b), nine different queue regions, L_n, $n = 1, \ldots, 9$, are defined for the instantaneous states of the queues, $P(i) = [P_1(i), P_2(i)]$, based on whether the buffers are empty, partially full, or completely full. Let K_{L_n}, $n = 1, \ldots, 5$ denote the set of the candidate transmission modes based on the states of the queues L_n, i.e., $K_{L_1} = \{1, \ldots, 7\}$, $K_{L_2} = \{1, 2, 3, 7\}$, $K_{L_3} = \{1, 2, 3, 5, 7\}$, $K_{L_4} = \{2, 5, 7\}$, $K_{L_5} = \{2, 4, 5, 6, 7\}$, $K_{L_6} = \{4, 5, 6, 7\}$, $K_{L_7} = \{1, 4, 5, 6, 7\}$, $K_{L_8} = \{1, 4, 7\}$, $K_{L_9} = \{1, 2, 3, 4, 7\}$. To summarize, only the transmission modes from the following set can be selected in time slot i

$$\mathcal{F} = \left\{k \in K_{R_m} \cap K_{L_n} | \gamma(i) \in R_m \land P(i-1) \in L_n \right\}.$$ (1)

Remark 1: We assume that the relay is responsible for performing the mode selection. In particular, at the beginning of each time slot, the users send pilots to the relay to determine the instantaneous SNR region. Using the instantaneous SNR region and the states of the queues, the relay performs mode selection according to the protocol proposed in Section III. Then, the relay broadcasts the index of the selected transmission mode to the users using three bits of feedback and the transmission begins.

C. Mode Selection Variables

For the development of the proposed adaptive mode selection protocols, it is convenient to introduce seven binary mode selection variables, $q_k(i) \in \{0, 1\}$, $k = 1, \ldots, 7$, where $q_k(i) = 1$ if mode M_k is selected and $q_k(i) = 0$ if it is not selected in the i-th time slot. Furthermore, we assume that, in each time slot, only one of the seven transmission modes can be selected, i.e., $\sum_{k=1}^7 q_k(i) = 1$ holds.

III. PROPOSED DELAY-CONSTRAINED PROTOCOL

As shown in [1], for sum throughput maximization, the queues of the buffers have to be at the edge of non-absorption. However, in this case, the size of the queues may increase as the number of time slots, N, tends to infinity. The idea of the delay-constrained protocol proposed in this paper is to operate the lengths of the queues in buffers B_1 and B_2 around certain values ℓ_1^h and ℓ_2^h, respectively. Hence, by choosing sufficiently small ℓ_1^h and ℓ_2^h, the average delays can be limited to certain desired values.

Before we formally present the protocol, we introduce the general delay-aware utility function $\Lambda_k(i)$ for transmission mode M_k which is designed such that it favours the selection of modes M_1 and M_3 if $\ell_1(i-1) < \ell_1^h$, modes M_2 and M_3 if $\ell_2(i-1) < \ell_2^h$, and modes M_4 and M_6 if $\ell_2(i-1) > \ell_2^h$, and modes M_5 and M_6 if $\ell_1(i-1) > \ell_1^h$. Furthermore, τ_k denotes a utility function representing the spectral efficiency of transmission mode M_k. Examples for possible choices of $\Lambda_k(i)$ and τ_k will be provided at the end of this subsection. The proposed protocol operates in one of two modes, i) a delay-efficient mode for stringent average delay requirements, and ii) a throughput-efficient mode for less stringent average delay requirements. In particular, from set \mathcal{F}, the protocol for the delay-efficient mode first selects the best transmission modes based on the delay-aware utility function $\Lambda_k(i)$, i.e.,

$$\mathcal{U}^d = \left\{k | k = \arg \max_{k \in \mathcal{F}} \Lambda_k(i) \right\}.$$ (2)

where $\mathcal{F}^d = \mathcal{F}$. Then, from set \mathcal{U}^d of the remaining modes with identical values of $\Lambda_k(i)$, the protocol selects the modes with the highest spectral efficiency based on τ_k, i.e.,

$$\mathcal{U}^t = \left\{k | k = \arg \max_{k \in \mathcal{F}^d} \tau_k \right\}.$$ (3)

where $\mathcal{F}^t = \mathcal{U}^d$. On the other hand, for the throughput-efficient mode, the protocol first selects the best transmission modes
based on the utility functions \(\tau_k\), and then from the remaining transmission modes with identical values of \(\tau_k\), the protocol selects the best transmission modes based on \(\Lambda_k(i)\). Furthermore, for both the delay-efficient and throughput-efficient modes, if there are multiple candidates with identical values of \(\Lambda_k(i)\) and \(\tau_k\), the protocol selects the final transmission mode from the candidate set with equal probabilities. To model the final mode selection mathematically, we define \(X_{\mathcal{U}}(i) \in \mathcal{U}\) as the outcome of rolling a die with \(|\mathcal{U}|\) equiprobable faces in the \(i\)-th time slot where \(|\cdot|\) denotes the cardinality of a set and \(\mathcal{U}\) is the final set of candidate modes. In the following, we propose the protocol in compact form.

Delay-Constrained Protocol: For the considered half-duplex bidirectional relaying network, the following adaptive mode selection leads to delay-constrained transmission

\[
q_k^*(i) = \begin{cases}
1, & \text{if } k^* = X_{\mathcal{U}}(i) \\
0, & \text{otherwise}
\end{cases}
\]
(4)

where, in (2) and (3), for the delay-efficient mode, we set \(\mathcal{U} = \mathcal{U}^d\), \(\mathcal{F}^d = \mathcal{U}^d\), and \(\mathcal{F}^d = \mathcal{F}\), and for the throughput-efficient mode, we set \(\mathcal{U} = \mathcal{U}^d\), \(\mathcal{F}^d = \mathcal{U}^d\), and \(\mathcal{F} = \mathcal{F}\). Furthermore, \(\ell_1^{thr}\) and \(\ell_2^{thr}\) are constants and are chosen to guarantee certain target average delays \(T_1^d\) and \(T_2^d\), respectively.

Proposed Utility Functions: The delay-aware utility function \(\Lambda_k(i)\) has to be designed such that the numbers of packets in buffers \(B_1\) and \(B_2\) remain close to \(\ell_1^{thr}\) and \(\ell_2^{thr}\), respectively. For instance, if \(\ell_1(i - 1) < \ell_1^{thr}\) and we have the choice to select between transmission modes \(M_1\) and \(M_2\), the proposed protocol should select mode \(M_1\) to fill the buffer. Moreover, the utility functions \(\Lambda_k(i)\) have to account for the states of the queues in both buffers. For example, if \(\ell_1(i - 1) = 0\) and \(\ell_2(i - 1) = 3\) where \(\ell_1^{thr} = \ell_2^{thr} = 5\), and we have the choice to select either mode \(M_1\) or \(M_2\), the adopted utility function must give priority to mode \(M_1\). Taking into account these considerations for all subsets of the seven possible transmission modes, there is a large number of possible utility functions \(\Lambda_k(i)\). In the following, we propose one set of utility functions which can effectively limit the average delays. The proposed delay-aware utility functions are

\[
\begin{align*}
\Lambda_1(i) &= \ell_1^{thr} - \ell_1(i - 1) \\
\Lambda_2(i) &= \ell_2^{thr} - \ell_2(i - 1) \\
\Lambda_3(i) &= \min\{\Lambda_1(i), \Lambda_2(i)\} \\
\Lambda_4(i) &= [\ell_2(i - 1) - \ell_2^{thr}]^+ \\
\Lambda_5(i) &= [\ell_1(i - 1) - \ell_1^{thr}]^+ \\
\Lambda_6(i) &= \max\{\Lambda_4(i), \Lambda_5(i)\} \\
\Lambda_7(i) &= 0
\end{align*}
\]
(5a)-(5g)

where \([x]^+ = \max\{x, 0\}\). The motivation for the above utility functions is as follows. First, we assign the value of zero for the silent mode as a reference. If the numbers of packets in the queues are below their respective thresholds, \(\Lambda_1(i), \Lambda_2(i),\) and \(\Lambda_3(i)\) are positive which favours the selection of the user-to-relay transmission modes. On the other hand, if the numbers of packets in the queues exceed the respective thresholds, \(\Lambda_4(i), \Lambda_5(i),\) and \(\Lambda_6(i)\) are positive which favours the selection of the relay-to-user transmission modes. The comparison between the point-to-point transmission modes is based on how much the numbers of packets in the queues deviate from their respective thresholds. Moreover, selecting the relay-to-user transmission modes leads to a decrease of the average delay while selecting the user-to-relay transmission modes might lead to an increase of the average delay. Thus, we use \([+]\) for modes \(M_4\) and \(M_5\) and not for modes \(M_1\) and \(M_2\), and we use \(\text{“max”}\) for mode \(M_6\) and \(\text{“min”}\) for mode \(M_3\).

Furthermore, since we assume that the nodes transmit with fixed rate \(R_0\), the spectral efficiency of a transmission mode is defined as the number of packets that is transmitted during one time slot. Hence, we choose the utility functions \(\tau_k\) as \(\tau_1 = \tau_0 = 2\), \(\tau_2 = \tau_3 = \tau_4 = \tau_5 = 1\), and \(\tau_7 = 0\).

IV. THROUGHPUT-DELAY ANALYSIS

In this section, we present a general framework for the throughput-delay analysis of any delay-constrained protocol with adaptive mode selection for the bidirectional relaying network. Moreover, as an example, we use the framework to derive some performance results for the protocol proposed in Section III. Due to space constraints, we only provide the results for the delay-efficient mode. The analysis of the protocol for the throughput-efficient mode is provided in a technical report [7] which is an extended version of this paper.

A. General Analysis of Adaptive Mode Selection Protocols

Let \(R_{j^*j}\) denote the average number of information bits/symbol received at node \(j^*\) from node \(j\). Moreover, the average number of information bits received at user 2 from user 1 is identical to the average number of information bits that user 2 receives from the relay, i.e., \(R_{12} = R_{r2}\). Similarly, we obtain that \(R_{12} = R_{r1}\) has to hold. Throughout this paper, the outage probability for each transmission direction is defined as the reduction in throughput compared to the ideal case when \(\gamma(i) \in \mathcal{R}_1\) and \(\ell(i - 1) \in \mathcal{L}_1\), for \(\forall i\) hold [8]. Mathematically, we write the flow outage probabilities as

\[
F_{12}^{out} = 1 - \frac{\bar{R}_{12}}{R_{12}^{max}} \quad \text{and} \quad F_{21}^{out} = 1 - \frac{\bar{R}_{21}}{R_{21}^{max}}
\]
(6)

where \(R_{12}^{max} = R_{21}^{max} = R_0/2\). Furthermore, the sum throughput and the outage probability of the system are given by \(R_{sum} = R_{12} + R_{21}\) and \(F_{sys} = F_{12}^{out} + F_{21}^{out}\), respectively.

Let \(s = (\ell_1, \ell_2)\), \(\ell_1 = 0, \ldots, \ell_1^{max}, \ell_2 = 0, \ldots, \ell_2^{max}\) denote the states of the queues of the buffers at the relay. Moreover, for future reference, we define the transition probability \(m'_{s_s} = Pr\{s \rightarrow s'\}\), i.e., if the buffers are in state \(s\) in the \((i-1)\)-th time slot, with probability \(m'_{s_s}\) the state of the queues is \(s'\) in the \(i\)-th time slot.

Remark 2: Since all nodes may transmit only one packet with a fixed transmission rate \(R_0\) in each time slot, the number of packets in each queue may increase or decrease only by one packet. In other words, the transition probability \(m'_{(\ell_1, \ell_2)}\) is zero if \(\ell_1' - \ell_1 \geq 2\) or \(\ell_2' - \ell_2 \geq 2\). Moreover, due to the half-duplex constraint, the relay cannot transmit and receive at the same time. Therefore, the number of packets in one queue cannot increase if, in the same time slot, the number of the packets in the other queue decreases and vice versa, i.e., \(m'_{(\ell_1 - 1, \ell_2 + 1)} = 0\) and \(m'_{(\ell_1 + 1, \ell_2 - 1)} = 0\) hold.
In order to analytically obtain the average throughput and the average delay, we first have to calculate the state occupancy probability of the Markov chain as the number of time slots tends to infinity, i.e., \(\Pr(s = (\ell_1, \ell_2)) \). To this end, all possible states are collected in one vector \(s \) as follows

\[
s = [(0,0), \ldots, (\ell_{\text{max}}^1,\ell_{\text{max}}^2), (0,1), \ldots, (\ell_{\text{max}}^1,1),
(0,2), \ldots, (\ell_{\text{max}}^1,\ell_{\text{max}}^2)]^T, \tag{7}
\]

where \([\cdot]^T\) denotes the transpose operation. Moreover, the state occupancy probability of a Markov chain \(s \) refers to the state in the \(n \)-th element of vector \(s \). Furthermore, vector \(\Pr(s) = [\Pr(s = (0,0)), \ldots, \Pr(s = (\ell_{\text{max}}^1,\ell_{\text{max}}^2))]^T \) contains all state occupancy probabilities. Let \(M \) denote the state transition matrix of the Markov chain where the entry in the \(m \)-th column and \(n \)-th row of \(M \) represents the transition probability from state \(s(m) \) to state \(s(n) \), i.e., \(\Pr(s(m) \rightarrow s(n)) \). Moreover, the state occupancy probability of a Markov chain can be obtained from the following three linear equations \[9\]

\[
M \Pr(s) = \Pr(s), \quad 1^T \Pr(s) = 1, \quad \Pr(s) \geq 0 \tag{8}
\]

where \(1 \) and \(0 \) denote \(M \)-dimensional vectors with all elements equal to one and zero, respectively, and \(M \) is the number of states in the Markov chain.

Using the transition and state occupancy probabilities, the average throughputs of both information flows are obtained as

\[
\bar{R}_{12} = \sum_{\ell_1=1 \ell_2=1}^{\ell_{\text{max}}^1 \ell_{\text{max}}^2} \left[m_{(\ell_1,\ell_2)}^{(\ell_1-1,\ell_2)} + m_{(\ell_1,\ell_2)}^{(\ell_1-1,\ell_2-1)} \right] \Pr(s = (\ell_1,\ell_2)) \bar{R}_0 \tag{9a}
\]

\[
\bar{R}_{21} = \sum_{\ell_1=1 \ell_2=1}^{\ell_{\text{max}}^1 \ell_{\text{max}}^2} \left[m_{(\ell_1,\ell_2)}^{(\ell_1-1,\ell_2-1)} + m_{(\ell_1,\ell_2)}^{(\ell_1-1,\ell_2)} \right] \Pr(s = (\ell_1,\ell_2)) \bar{R}_0 \tag{9b}
\]

Moreover, let \(T_j(i), j = 1, 2, \) denote the waiting time that a packet transmitted from user \(j \) in the \(i \)-th time slot stays in buffer \(B_j \) before it is transmitted to the respective user. According to Little’s Law \[10\], the average delays of both information flows are obtained as

\[
\bar{T}_1 = \frac{\bar{Q}_1}{\bar{R}_{12}} \quad \text{and} \quad \bar{T}_2 = \frac{\bar{Q}_1}{\bar{R}_{21}} \tag{10}
\]

where

\[
\bar{Q}_1 = \sum_{\ell_1=1 \ell_2=0}^{\ell_{\text{max}}^1 \ell_{\text{max}}^2} \ell_1 \Pr(s = (\ell_1,\ell_2)) \tag{11a}
\]

\[
\bar{Q}_2 = \sum_{\ell_1=0 \ell_2=1}^{\ell_{\text{max}}^1 \ell_{\text{max}}^2} \ell_2 \Pr(s = (\ell_1,\ell_2)) \tag{11b}
\]

Considering (8)-(11), the throughput and delay performances of any protocol with adaptive mode selection for the bidirectional relaying network considered in this paper can be analytically evaluated once the transition probabilities of the states of the Markov chain are determined.

B. Main Results for the Proposed Protocol

In order to obtain the transition probabilities \(m_s^\prime \), we use the following partitioning of the possible SNR regions

\[
m_s^\prime = \sum_{m=1}^{5} P_{R,m} \Pr(\ell(i) = s' | \gamma(i) \in R_m \land \ell(i-1) = s) + \phi \tag{12}
\]

The value of \(m_s^\prime \) depends on states \(s \) and \(s' \). As an example, we provide the expressions for \(m_{(\ell_1,\ell_2)}^{(\ell_1+1,\ell_2+1)} \) and \(m_{(\ell_1,\ell_2)}^{(\ell_1-1,\ell_4-1)} \) on the top of the next page. The remaining transition probabilities can be obtained in a similar manner, cf. [7, Proposition 1]. Using the transition probabilities and the state occupancy probabilities, the average throughput and the average delay of the proposed protocol in the delay-efficient mode can be obtained from (9) and (10), respectively.

Proposition 1: The minimum average delays that the proposed protocol in the delay-efficient mode can achieve are

\[
\bar{T}_1^d = \frac{1}{P_{R_1} + P_{R_2} + P_{R_4}}, \quad \bar{T}_2^d = \frac{1}{P_{R_1} + P_{R_2} + P_{R_3}}, \tag{14}
\]

and the achievable average throughputs with the above average delay constraints are given by

\[
\bar{R}_{12} = \frac{a + b}{1 + a + b + c} (P_{R_1} + P_{R_2} + P_{R_4}) R_0, \quad \bar{R}_{21} = \frac{a + c}{1 + a + b + c} (P_{R_1} + P_{R_2} + P_{R_3}) R_0, \tag{15a,b}
\]

where \(a, b, \) and \(c \) are given by

\[
a = \frac{P_{R_1}}{1 - P_{R_5}}, \quad b = \frac{1}{1 - P_{R_1} - P_{R_5}}, \quad c = \frac{1}{1 - P_{R_4} - P_{R_5}}. \tag{16a-c}
\]

Proof: The lowest values for the average delays for both information flows are obtained when \(\ell_{\text{thr}}^1 = \ell_{\text{thr}}^2 = 0 \). We obtain the results in Proposition 1 by substituting the transition probabilities for \(\ell^1_{\text{thr}} = \ell^2_{\text{thr}} = 0 \) into (8), (9), and (10). We refer to [7, Appendix B] for a more detailed proof.

Remark 3: In [7, Lemma 1], we obtained a lower bound for the average delays of any delay-constraint protocol with adaptive mode selection and causal CSI information. Note that the minimum average delays given in Proposition 1 are indeed the minimum possible average delays reported in [7, Lemma 1]. Therefore, the proposed protocol in the delay-efficient mode can achieve all possible average delays which makes this protocol attractive for strictly delay-constrained applications.

C. High SNR Analysis

Next, we investigate the performance of the proposed protocol in the high SNR regime for Rayleigh fading. For Rayleigh fading, the probability density functions (pdfs) of \(\gamma_1(i) \) and \(\gamma_2(i) \) are given by

\[
f_{\gamma_1}(\gamma_1) = \frac{1}{\pi \gamma_1} e^{-\frac{\gamma_1}{\Omega_1}} \quad \text{and} \quad f_{\gamma_2}(\gamma_2) = \frac{1}{\Omega_2} e^{-\frac{\gamma_2}{\Omega_2}},
\]

respectively. For future reference, we define \(f(x) = o(g(x)) \) if \(\lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \).

Proposition 2: In the high SNR regime, i.e., \(\gamma \to \infty \), and for Rayleigh fading, the sum throughput and the system outage probability of the proposed protocol in the delay-efficient mode and the minimum target average delays in Proposition 1 are given by

\[
\bar{R}_{\text{sum}} = R_0, \quad F_{\text{out}}(\gamma) = \frac{(\Omega_1 + \Omega_2) \gamma_{\text{thr}}}{\Omega_1 \Omega_2} \cdot \frac{1}{\gamma} + o\left(\frac{1}{\gamma}\right), \tag{17}
\]
where the target average delays approach one, i.e., $(\bar{T}_{1}, \bar{T}_{2}) \rightarrow (1, 1)$.

Proof: For $\gamma \rightarrow \infty$, exploiting the definitions of R_m and P_{R_m}, we obtain $P_{R_1} \rightarrow 1$, $P_{R_m} \rightarrow 0$, $m = 2, 3, 4, 5$, $a \rightarrow 1$, and $b, c \rightarrow 0$. Hence, we obtain $R_{12} \rightarrow \frac{R_0}{2}$ and $R_{12} \rightarrow \frac{R_0}{2}$ from (15), and consequently $R_{sum} \rightarrow R_0$. In a similar manner, we obtain $(\bar{T}_{1}, \bar{T}_{2}) \rightarrow (1, 1)$ from (14). For derivation of the outage probabilities, we substitute the first order approximations of P_{R_m}, $m = 1, \ldots, 5$ for Rayleigh fading, as given in [7, eq. (23)], into (6) and (15), and simplify the results using the Taylor series $\frac{1}{1 + x} = 1 - x + o(x)$ for $x \rightarrow 0$ to obtain (17). This completes the proof.■

Remark 4: In the high SNR regime, the average sum throughput of the proposed protocol in the delay-efficient mode approaches the upper bound given in [1] even for the minimum average delay of one time slot, cf. (17). For the system outage probability, the same diversity order of one is obtained as for the delay-unconstrained protocol in [1]. However, the system outage probabilities of the delay-unconstrained protocol and the proposed protocol in the delay-efficient mode with a target average delay of one time slot have an SNR gap of

$$\text{SNR}_{\text{gap}} = 10 \log_{10} \left(1 + \frac{\Omega_{\text{min}}}{\Omega_{\text{max}}} \right) \leq 3 \text{ dB},$$

(18)

where $\Omega_{\text{min}} = \min\{\Omega_1, \Omega_2\}$ and $\Omega_{\text{max}} = \max\{\Omega_1, \Omega_2\}$. The expression in (18) is obtained by comparing the required SNR for a given outage probability for the proposed protocol in (17) and the protocol in [1, eq. (9)].

Remark 5: For the high SNR performance analysis in Proposition 2, we assumed the minimum possible target average delays given in Proposition 1. We note that for larger permissible delays, the SNR gap is lower than that in (18).

V. NUMERICAL RESULTS

In this section, the performances of the proposed delay-constrained protocol is evaluated for Rayleigh fading. We consider the sum throughputs and the outage probabilities of the proposed protocol for the minimum possible average delays, i.e., $\ell_1^{\text{thr}} = \ell_2^{\text{thr}} = 0$. Moreover, the results are compared with the sum throughput and the system outage probability of the delay-unconstrained protocol in [1]. We are interested in these comparisons, since the throughputs and the system outage probabilities of the proposed protocol with any valid values of the design variables, i.e., ℓ_j^{thr}, $j = 1, 2$, fall between the throughputs and the system outage probabilities of the aforementioned cases, respectively. Furthermore, we assume $\ell_1^{\max} = \ell_2^{\max} = 10$, $R_0 = 1$, and consider both a symmetric channel, $\Omega_1 = \Omega_2 = 1$, and an asymmetric channel, $\Omega_1 = 0.25$, $\Omega_2 = 1$. The curves depicted in this section are obtained by analytically evaluating the proposed protocols.

As a benchmark scheme, we adopt the MABC protocol which, for high SNRs, has a superior performance compared to the TDBC and traditional two-way relaying protocols. Recall that in the conventional MABC protocol, the relay receives information from both users in one time slot and forwards it to the respective users in the following time slot [3]. For a fair comparison, we also consider a MABC protocol where the relay has a buffer and receives and stores information for $N/2$ consecutive time slots and forwards them to the respective users in the remaining $N/2$ time slots. Note that the conventional MABC protocol has a average delay of one time slot for both information flows while the version employing buffers and $N \rightarrow \infty$ is delay-unlimited. Furthermore, for clarity of presentation, we only show results for the two considered MABC protocols for the asymmetric channel.

In Fig. 3, the average sum throughput, F_{out}, is depicted versus the transmit SNR, γ, in (dB). We observe that the sum throughputs of all considered protocols converge to R_0 in the high SNR regime. Moreover, the average sum throughput of the proposed protocol in the throughput-efficient mode is higher than the average sum throughput of the proposed protocol in the delay-efficient mode. Note that this gain is obtained at the cost of higher average delay of the protocol, cf. Fig. 5. We can also conclude that the SNR gap between the upper bound on the sum throughput given in [1] and the sum throughput of the proposed protocols is smaller for asymmetric channels than for symmetric channels. Furthermore, there is a considerable performance gain compared to the MABC protocol with one time slot delay. Moreover, the proposed protocol with the minimum possible average delays even outperforms the MABC protocol with unlimited delay.

In Fig. 4, the system outage probability, F_{out}, is plotted versus the transmit SNR, γ, in (dB). We observe that the system outage probabilities of all considered protocols have diversity order one. Similar to the comparison of the sum throughputs in Fig. 3, the system outage probability of the proposed protocol in the throughput-efficient mode is lower than that in the delay-efficient mode. Moreover, in the high SNR regime, the SNR gap between the lower bound on the system outage probability given in [1] and the system outage probability of the proposed protocol in the delay-efficient mode is 3 dB for the symmetric channel and less than 3 dB for the asymmetric channel as predicted by (18). Furthermore, the SNR gap between the lower bound and the system outage...
On the states of the queues at the buffers, i.e., the number of packets in the queues. Our performance analysis and numerical results revealed that, in the high SNR regime, even for the minimum possible average delay, i.e., one time slot for each information flow, the SNR gap between the system outage probabilities of the proposed protocol and the delay-unconstrained protocol from [1] is at most 3 dB. Furthermore, the SNR gap compared to the delay-unconstrained protocol can vanish at the cost of an increased average delay.

VI. CONCLUSION

In this paper, we proposed a heuristic but efficient delay-constrained protocol with adaptive mode selection for bidirectional relay networks. The proposed protocol selects a transmission mode in each time slot not only based on the instantaneous qualities of the involved links but also based on the states of the queues at the buffers.