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Abstract—There are several cases in wireless communications
theory where the statistics of the sum of independent or corre-
lated Nakagami-𝑚 random variables (RVs) is necessary to be
known. However, a closed-form solution to the distribution of
this sum does not exist when the number of constituent RVs
exceeds two, even for the special case of Rayleigh fading. In
this paper, we present an efficient closed-form approximation
for the distribution of the sum of arbitrary correlated Nakagami-
𝑚 envelopes with identical and integer fading parameters. The
distribution becomes exact for maximal correlation, while the
tightness of the proposed approximation is validated statistically
by using the Chi-square and the Kolmogorov-Smirnov goodness-
of-fit tests. As an application, the approximation is used to study
the performance of equal-gain combining (EGC) systems oper-
ating over arbitrary correlated Nakagami-𝑚 fading channels,
by utilizing the available analytical results for the error-rate
performance of an equivalent maximal-ratio combining (MRC)
system.

Index Terms—Nakagami-𝑚 fading, arbitrary correlation, ap-
proximative statistics, equal gain combining (EGC), maximal
ratio combining (MRC).

I. INTRODUCTION

THE analytical determination of the the probability distri-
bution functions (PDF) and the cumulative distribution

functions (CDF) of the sums of independent and correlated
signals’ envelopes is rather cumbersome, yielding difficulties
in the theoretical performance analysis of some wireless
communications systems [1]. A closed-form solution for the
PDF and the CDF of the sum of Rayleigh random variables
(RVs) has not been presented for more then 90 years, except
when the number of RVs equals two. The famous Beaulieu
series for computing PDF of a sum of independent RVs were
proposed in [2]. Later, a finite range multifold integral for
PDF of the sum of independent and identically distributed
(i.i.d.) Nakagami-𝑚 RVs was proposed in [3]. A closed-form
formula for the PDF of the sum of two i.i.d. Nakagami-𝑚
RVs was given in [4]-[6]. Exact infinite series representations
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for the sum of three and four i.i.d. Nakagami-𝑚 RVs was
presented in [7], although their usefulness is overshadowed
by their computational complexity.

The most famous application, where these sums appear,
deals with the analytical performance evaluation of equal
gain combining (EGC) systems [8]-[13]. Only few papers
address the performance of EGC receivers in correlated fading
with arbitrary-order diversity. In [14], EGC was studied by
approximating the moment generating function (MGF) of the
output SNR, where the moments are determined exactly only
for exponentially correlated Nakagami-𝑚 channels in terms
of multi-fold infinite series. A completely novel approach
for performance analysis of diversity combiners in equally
correlated fading channels was proposed in [15], where the
equally correlated Rayleigh fading channels are transformed
into a set of conditionally independent Rician RVs. Based on
this technique, the authors in [16] derived the moments of the
EGC output signal-to-noise ratio (SNR) in equally correlated
Nakagami-𝑚 channels in terms of the Appell hypergeometric
function, and then used them to evaluate the EGC performance
metrics, such as the outage probability and the error proba-
bility (using Gaussian quadrature with weights and abscissas
computed by solving sets of nonlinear equations).

All of the above works yield to results that are not expressed
in closed form due to the inherent intricacy of the exact sum
statistics. This intricacy can be circumvented by searching
for suitable highly accurate approximations for the PDF of
a sum of arbitrary number of Nakagami-𝑚 RVs. Various
simple and accurate approximations to the PDF of sum of
independent Rayleigh, Rice and Nakagami-𝑚 RVs had been
proposed in [17]-[21], which had been used for analytical
EGC performance evaluation. Based on the ideas given in [1],
the works [18]-[21] use various alternatives of the moment
matching method to arrive at the required approximation.

In this paper, we present a highly accurate closed-form
approximation for the PDF of the sum of non-identical ar-
bitrarily correlated Nakagami-𝑚 RVs with identical (integer)
fading parameters. By applying this approximation, we eval-
uate the performance of EGC systems in terms of the known
performance of an equivalent maximal ratio combining (MRC)
system [22], [24], thus avoiding many complex numerical
evaluations inherent for the methods presented in the afore-
mentioned previous works for the EGC performance analysis.
Although approximate, the offered closed-form expressions
allow to gain insight into system performance by considering,
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for example, operation in the low or high SNR region.

II. AN ACCURATE APPROXIMATION TO THE SUM OF

ARBITRARY CORRELATED NAKAGAMI-𝑚 ENVELOPES

Let 𝑍 be a sum of 𝐿 non-identical correlated Nakagami-𝑚
envelopes, {𝑍𝑘}𝐿𝑘=1, defined as

𝑍 =
𝐿∑

𝑘=1

𝑍𝑘 . (1)

The envelopes {𝑍𝑘}𝐿𝑘=1 are distributed according to the
Nakagami-𝑚 distribution, whose PDF is given by [1]

𝑓𝑍𝑘
(𝑧) =

(
𝑚𝑧

Ω𝑘

)𝑚𝑧 2𝑧2𝑚𝑧−1

Γ(𝑚𝑧)
exp

(
−𝑚𝑧

Ω𝑘
𝑧2
)
, 𝑧 ≥ 0 ,

(2)
with arbitrary average powers 𝐸[𝑍2

𝑘 ] = Ω𝑘, 1 ≤ 𝑘 ≤ 𝐿, and
the same (integer) fading parameter𝑚𝑧 . The power correlation
coefficient between any given pair of envelopes (𝑍𝑖, 𝑍𝑗) is
defined as

𝜌𝑖𝑗 =
cov(𝑍2

𝑖 , 𝑍
2
𝑗 )√

var(𝑍2
𝑖 ) var(𝑍

2
𝑗 )
, 𝑖 ∕= 𝑗 , (3)

where 𝐸[⋅], cov(⋅, ⋅) and var(⋅) denote expectation, covariance
and variance, respectively.

We propose the unknown PDF of 𝑍 be approximated by
the PDF of 𝑅 defined as

𝑅 =

√√√⎷ 𝐿∑
𝑘=1

𝑅2
𝑘 , (4)

where 𝑅𝑘, 1 ≤ 𝑘 ≤ 𝐿, denote a set of 𝐿 correlated
but identically distributed Nakagami-𝑚 envelopes with same
average powers, 𝐸[𝑅2

𝑘] = Ω𝑅, and same fading parameters,
𝑚𝑅. The power correlation coefficients between any given pair
(𝑅𝑖, 𝑅𝑗) is assumed equal to that of the respective pair of the
original envelopes (𝑍𝑖, 𝑍𝑗), 𝜌𝑖𝑗 .

The statistics of 𝑅2 is easily seen to be equal to the statistics
of the sum of correlated Gamma RVs. Thus, the MGF of 𝑅2

is represented by [26, Eq. (11)]

𝑀𝑅2(𝑠) = det

(
I− 𝑠Ω𝑅

𝑚𝑅
Λ

)−𝑚𝑅

=

𝐿∏
𝑘=1

(
1− 𝑠Ω𝑅

𝑚𝑅
𝜆𝑘

)−𝑚𝑅

(5)
where I is the 𝐿 × 𝐿 identity matrix and Λ is the 𝐿 × 𝐿
positive definite matrix (denoted as the correlation matrix)
whose elements are the square roots of the power correlation
coefficients,

Λ =

⎡
⎢⎢⎣

1
√
𝜌12 ⋅ ⋅ ⋅ √

𝜌1𝐿√
𝜌21 1 ⋅ ⋅ ⋅ √

𝜌2𝐿
. . ⋅ ⋅ ⋅ .√
𝜌𝐿1

√
𝜌𝐿2 ⋅ ⋅ ⋅ 1

⎤
⎥⎥⎦ . (6)

The 𝐿 eigenvalues of the correlation matrix Λ are denoted by
𝜆𝑘, 1 ≤ 𝑘 ≤ 𝐿.

Throughout literature, the PDF of𝑅2 is determined by using
several different approaches that result in alternative closed-
form solutions, two of which are given by [23, Eq. (29)] and

[24, Eq. (10)]. After a simple RV transformation, these two
alternatives for the PDF of 𝑅 are expressed as

𝑓𝑅(𝑟) =
2𝑟

𝜋

∫ ∞

0

cos
[
𝑚𝑅

∑𝐿−1
𝑘=0 arctan

(
𝑡Ω𝑅𝜆𝑘

𝑚𝑅

)
− 𝑡𝑟2

]
∏𝐿−1

𝑘=0

[
1 +
(
𝑡Ω𝑅𝜆𝑘

𝑚𝑅

)2]𝑚𝑅/2
𝑑𝑡

(7)

=
2𝑟2𝐿𝑚𝑅−1

Γ(𝐿𝑚𝑅)

(
𝑚𝑅

Ω𝑅

)𝐿𝑚𝑅
(

1

det(Λ)

)𝑚𝑅

×Φ
(𝐿)
2

(
𝑚𝑅,𝑚𝑅, . . . ,𝑚𝑅;𝐿𝑚𝑅;−𝑚𝑅

Ω𝑅

𝑟2

𝜆1
, . . . ,−𝑚𝑅

Ω𝑅

𝑟2

𝜆𝐿

)
,

(8)

where Φ
(𝐿)
2 (⋅) is the confluent Lauricella hypergeometric

function of 𝐿 variables, defined in [33] and [24, Eqs. (9)-
(10)]. Note that (8) is here presented to demonstrate existence
of an exact closed-form solution, whereas (7) is much more
convenient for accurate and efficient numerical integration. For
example, the PDF may be obtained using the Gauss-Legendre
quadrature rule [34, Eq. (25.4.29)] over (7) [23].

Next, we apply the moment matching method to determine
the parameters Ω𝑅 and 𝑚𝑅 of the proposed approximation
(7)-(8) to the PDF of 𝑍 . In wireless communications, moment
matching methods are most typically applied to approximate
distributions of the sum of log-normal RVs [29]. Most recently,
a variant of moment matching, matching of the normalized
first and second moments, had been applied to arrive at an
improved approximation to the sum of independent Nakagami-
𝑚 RVs via the 𝛼-𝜇 distribution [20]-[21].

We arrive at required approximation by matching the first
and the second moments of the powers of 𝑍 and 𝑅, i.e., the
second and fourth moments of the envelopes 𝑍 and 𝑅,

𝐸[𝑍2] = 𝐸[𝑅2], 𝐸[𝑍4] = 𝐸[𝑅4] . (9)

Matching the first and the second moments of the powers aids
the analytical tractability of the proposed approximation due
to the availability of the MGF of 𝑅2 in closed form, given by
(5). The second and the fourth moments of 𝑅 are determined
straightforwardly by applying the moment theorem over (5),
yielding

𝐸[𝑅2] =
𝑑𝑀𝑅2(𝑠)

𝑑𝑠

∣∣∣∣∣
𝑠=0

= Ω𝑅

𝐿∑
𝑙=1

𝜆𝑙 = Ω𝑅𝐿 , (10)

𝐸[𝑅4] =
𝑑2𝑀𝑅2(𝑠)

𝑑𝑠2

∣∣∣∣∣
𝑠=0

=
Ω2

𝑅

𝑚𝑅

[
𝐿∑

𝑙=1

𝜆2𝑙 +𝑚𝑅𝐿
2

]
. (11)

Introducing (10) and (11) into (9), one obtains the unknown
parameters for the statistics of 𝑅

Ω𝑅 =
𝐸[𝑍2]

𝐿
, 𝑚𝑅 =

∑𝐿
𝑙=1 𝜆

2
𝑙

𝐿2

(𝐸[𝑍2])2

𝐸[𝑍4]− (𝐸[𝑍2))2
. (12)

Using the multinomial theorem and [1, Eq. (137)], the second
and the fourth moments of 𝑍 are determined as

𝐸[𝑍2] =

𝐿∑
𝑘=1

Ω𝑘 +
2Γ2(𝑚𝑧 + 1/2)

𝑚𝑧Γ2(𝑚𝑧)

×
𝐿∑

𝑖=1

𝐿∑
𝑗=𝑖+1

√
Ω𝑖Ω𝑗 2𝐹1 (−1/2,−1/2;𝑚𝑧; 𝜌𝑖𝑗) , (13)
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𝐸[𝑍4] =
𝑚𝑧 + 1

𝑚𝑧

𝐿∑
𝑚=1

Ω2
𝑚 +

6Γ2(𝑚𝑧 + 1)

𝑚2
𝑧Γ

2(𝑚𝑧)

𝐿∑
𝑖=1

𝐿∑
𝑗=𝑖+1

Ω𝑖Ω𝑗

×2𝐹1 (−1,−1;𝑚𝑧; 𝜌𝑖𝑗) +
4Γ(𝑚𝑧 + 3/2)Γ(𝑚𝑧 + 1/2)

𝑚2
𝑧Γ

2(𝑚𝑧)

×
𝐿∑

𝑖=1

𝐿∑
𝑗=𝑖+1

(Ω
3/2
𝑖 Ω

1/2
𝑗 +Ω

1/2
𝑖 Ω

3/2
𝑗 )2𝐹1

(
−3

2
,−1

2
;𝑚𝑧; 𝜌𝑖𝑗

)

+12

𝐿∑
𝑚=1

𝐿∑
𝑖=𝑚+1

𝐿∑
𝑗=𝑖+1

Ω𝑚

√
Ω𝑖Ω𝑗𝐸[𝑍

2
𝑚𝑍𝑖𝑍𝑗]

+12
𝐿∑

𝑚=1

𝐿∑
𝑖=𝑚+1

𝐿∑
𝑗=𝑖+1

√
Ω𝑚Ω𝑖

√
Ω𝑗𝐸[𝑍𝑚𝑍

2
𝑖 𝑍𝑗]

+12

𝐿∑
𝑚=1

𝐿∑
𝑖=𝑚+1

𝐿∑
𝑗=𝑖+1

√
Ω𝑚Ω𝑖Ω𝑗𝐸[𝑍𝑚𝑍𝑖𝑍

2
𝑗 ]

+ 24

𝐿∑
𝑚=1

𝐿∑
𝑛=𝑚+1

𝐿∑
𝑖=𝑛+1

𝐿∑
𝑗=𝑖+1

√
Ω𝑚Ω𝑛Ω𝑖Ω𝑗𝐸[𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 ] ,

(14)
where 2𝐹1(⋅) is the Gauss hypergeometric function [31]. The
joint moments 𝐸[𝑍2

𝑚𝑍𝑖𝑍𝑗], 𝐸[𝑍𝑚𝑍
2
𝑖 𝑍𝑗 ], 𝐸[𝑍𝑚𝑍𝑖𝑍

2
𝑗 ] and

𝐸[𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 ] are not known in closed-form for arbitrary
branch correlation. Exact closed-form expressions are avail-
able only for some particular correlation models, such as the
exponential and the equal correlation models. For the case or
arbitrary correlation, we utilize the method presented in [27],
where an arbitrary correlation matrix Λ is approximated by its
respective Green’s matrix, followed by the application of the
available joint moments of the exponential correlation model.

A. Equal correlation model

Equal correlation typically corresponds to the scenario of
multichannel reception from closely spaced diversity antennas
(e.g., three antennas placed on an equilateral triangle). This
model may be employed as a worst case correlation scenario,
since the impact of correlation on system performance for
other correlation models typically will be less severe [22],
[30].

For this correlation model, the power correlation coefficients
are all equal,

𝜌𝑖𝑗 = 𝜌, 𝑖 ∕= 𝑗, 0 ≤ 𝜌 ≤ 1 . (15)

When 𝑚𝑧 is assumed to be integer, the unknown joint mo-
ments in (14) can be expressed in closed-form as [16, Eq.
(43)]

𝐸[𝑍2
𝑚𝑍𝑖𝑍𝑗] = 𝐸[𝑍𝑚𝑍

2
𝑖 𝑍𝑗] = 𝐸[𝑍𝑚𝑍𝑖𝑍

2
𝑗 ]

=

(
1−√

𝜌

𝑚𝑧

)2

𝑊 (2, 1, 1) , (16)

𝐸[𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 ] =

(
1−√

𝜌

𝑚𝑧

)2

𝑊 (1, 1, 1, 1) , (17)

where the coefficients 𝑊 (⋅ ⋅ ⋅ ) are determined as

𝑊 (𝑘1, ..., 𝑘𝑁 ) =

⎛
⎝ 𝑁∏

𝑗=1

Γ(𝑚𝑧 + 𝑘𝑗/2)

Γ(𝑚𝑧)

⎞
⎠( 1−√

𝜌

1 + (𝑁 − 1)
√
𝜌

)𝑚𝑧

×𝐹 (𝑁)
𝐴

(
𝑚𝑧 ;𝑚𝑧 +

𝑘1
2
, ⋅ ⋅ ⋅ ,𝑚𝑧 +

𝑘𝑁
2

;𝑚𝑧, ⋅ ⋅ ⋅ ,𝑚𝑧;

√
𝜌

1 + (𝑁 − 1)
√
𝜌
, ⋅ ⋅ ⋅ ,

√
𝜌

1 + (𝑁 − 1)
√
𝜌

)
, (18)

with 𝐹
(𝑁)
𝐴 (⋅) denoting the Lauricella 𝐹𝐴 hypergeometric

function of 𝑁 variables, defined by [31, Eq. (9.19)] and [25,
Eqs. (11)-(13)].

Note that the coefficient 𝑊 (2, 1, 1) needs to be evaluated
when 𝐿 ≥ 3, whereas the coefficient𝑊 (1, 1, 1, 1) needs to be
evaluated when 𝐿 ≥ 4. In Appendix A, 𝑊 (2, 1, 1) is reduced
to the more familiar hypergeometric functions, attaining the
form given by (A.2). 𝑊 (1, 1, 1, 1) requires numerical evalua-
tion of the Lauricella 𝐹𝐴 function of 4 variables, which can
be computed with desired accuracy by using one of the two
numerical methods presented in [25, Section IV.A].

The assumption of equal average powers, Ω𝑘 = Ω𝑍 , 1 ≤
𝑘 ≤ 𝐿, yields independence of 𝑚𝑅 from Ω𝑍 . For this case,
Table I gives the values of 𝑚𝑅 for several combinations of 𝜌,
𝐿 and 𝑚𝑍 . The use of Table I aids the practical applicability
of our approach for the case of equal average powers.

For the equal correlation model, the eigenvalues of Λ are
exactly found as 𝜆1 = 1+ (𝐿− 1)

√
𝜌 and 𝜆𝑘 = (1−√

𝜌) for
2 ≤ 𝑘 ≤ 𝐿, so the statistics of 𝑅2 is identical to that of the
sum of a pair of independent Nakagami RVs. Thus, the MGF
of 𝑅2 is given by [30, Eq. (9.213)], whereas the PDF of 𝑅 is
given by [30, Eq. (9.208)]

𝑓𝑅(𝑟) =

(
𝑚𝑅

Ω𝑅

)𝑚𝑅𝐿

× 2𝑟2𝑚𝑅𝐿−1 exp
(−𝑚𝑅𝑟

2/((1−√
𝜌)Ω𝑅)

)
Γ(𝑚𝑅𝐿)(1−√

𝜌)𝑚𝑅(𝐿−1)(1 + (𝐿 − 1)
√
𝜌)𝑚𝑅

×1𝐹1

(
𝑚𝑅;𝑚𝑅𝐿;

𝑚𝑅𝐿
√
𝜌

(1−√
𝜌)(1 + (𝐿− 1)

√
𝜌)Ω𝑅

𝑟2
)
, (19)

where 1𝐹1(⋅) is the Kummer confluent hypergeometric func-
tion [31, Eq. (9.210)].

B. Exponential correlation model

Exponential correlation typically corresponds to the sce-
nario of multichannel reception from equispaced diversity an-
tennas in which the correlation between the pairs of combined
signals decays as the spacing between the antennas increases
[22], [30].

For this correlation model, the power correlation coefficients
are determined as

𝜌𝑖𝑗 = 𝜌
∣𝑖−𝑗∣, 0 ≤ 𝜌 ≤ 1 . (20)

The unknown joint moments in (14), 𝐸[𝑍2
𝑚𝑍𝑖𝑍𝑗],

𝐸[𝑍𝑚𝑍
2
𝑖 𝑍𝑗 ], 𝐸[𝑍𝑚𝑍𝑖𝑍

2
𝑗 ] and 𝐸[𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗], can be

calculated from [14, Eqs. (11) and (12)]. The Appendix B
derives simpler alternatives to [14, Eqs. (11) and (12)], which



4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 1, JANUARY 2010

TABLE I
FADING PARAMETER 𝑚𝑅 FOR SOME FEASIBLE SCENARIOS WITH EQUAL CORRELATION

𝑚𝑧 = 1 𝑚𝑧 = 2 𝑚𝑧 = 3
𝜌 𝐿 = 2 𝐿 = 3 𝐿 = 4 𝐿 = 2 𝐿 = 3 𝐿 = 4 𝐿 = 2 𝐿 = 3 𝐿 = 4

𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅

0 0.9552 0.9411 0.9343 1.947 1.93 1.9217 2.943 2.9258 2.9168
0.2 0.9195 0.8884 0.8709 1.9102 1.876 1.8569 2.9068 2.8715 2.8518
0.4 0.9156 0.8841 0.8672 1.907 1.8722 1.8535 2.9039 2.868 2.8487
0.6 0.9304 0.9056 0.8929 1.9242 1.8971 1.8831 2.9222 2.8944 2.8799
0.8 0.9587 0.9445 0.9374 1.956 1.9409 1.9333 2.9553 2.9399 2.9321

TABLE II
FADING PARAMETER 𝑚𝑅 FOR SOME FEASIBLE SCENARIOS WITH EXPONENTIAL CORRELATION

𝑚𝑧 = 1 𝑚𝑧 = 2 𝑚𝑧 = 3
𝜌 𝐿 = 2 𝐿 = 3 𝐿 = 4 𝐿 = 2 𝐿 = 3 𝐿 = 4 𝐿 = 2 𝐿 = 3 𝐿 = 4

𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅 𝑚𝑅

0 0.9552 0.9411 0.9343 1.947 1.93 1.9217 2.943 2.9258 2.9168
0.2 0.9195 0.9033 0.9015 1.9102 1.892 1.8897 2.9068 2.8878 2.8852
0.4 0.9156 0.8887 0.88 1.907 1.877 1.8675 2.9039 2.8728 2.8629
0.6 0.9304 0.8988 0.8817 1.9242 1.889 1.87 2.9222 2.8858 2.866
0.8 0.9587 0.934 0.9162 1.956 1.9291 1.9093 2.9553 2.9277 2.9072

involve a single infinite sum and a familiar hypergeometric
function,

𝐸[𝑍𝑛1
𝑚 𝑍

𝑛2

𝑖 𝑍
𝑛3

𝑗 ] =
∣Δ∣𝑚𝑧

𝛿
𝑚𝑧+𝑛1/2
11 𝛿

𝑚𝑧+𝑛2/2
22 𝛿

𝑚𝑧+𝑛3/2
33

× Γ(𝑚𝑧 + 𝑛3/2)

Γ2(𝑚𝑧)𝑚
(𝑛1+𝑛2+𝑛3)/2
𝑧

∞∑
𝑘=0

(
𝛿212
𝛿11𝛿22

)𝑘

× Γ(𝑚𝑧 + 𝑘 + 𝑛1/2)Γ(𝑚𝑧 + 𝑘 + 𝑛2/2)

Γ(𝑚𝑧 + 𝑘)𝑘!

×2𝐹1

(
𝑚𝑧 + 𝑘 +

𝑛2
2
,𝑚𝑧 +

𝑛3
2
,𝑚𝑧,

𝛿223
𝛿22𝛿33

)
, (21)

𝐸[𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 ] =
∣Ψ∣𝑚𝑧

(𝜓11𝜓22𝜓33𝜓44)𝑚𝑧+1/2

Γ2(𝑚𝑧 + 1/2)

Γ3(𝑚𝑧)𝑚2
𝑧

×
∞∑
𝑘=0

Γ2(𝑚𝑧 + 𝑘 + 1/2)

𝑘!Γ(𝑚𝑧 + 𝑘)

(
𝜓2
23

𝜓22𝜓33

)𝑘

× 2𝐹1

(
𝑚𝑧 +

1

2
, 𝑘 +𝑚𝑧 +

1

2
,𝑚𝑧,

𝜓2
12

𝜓11𝜓22

)

×2𝐹1

(
𝑚𝑧 +

1

2
, 𝑘 +𝑚𝑧 +

1

2
,𝑚𝑧,

𝜓2
34

𝜓33𝜓44

)
. (22)

In (21), (𝑛1, 𝑛2, 𝑛3) = (2, 1, 1) for the calculation of
𝐸[𝑍2

𝑚𝑍𝑖𝑍𝑗 ], (𝑛1, 𝑛2, 𝑛3) = (1, 2, 1) for the calculation of
𝐸[𝑍𝑚𝑍

2
𝑖 𝑍𝑗] and (𝑛1, 𝑛2, 𝑛3) = (1, 1, 2) for the calculation

of 𝐸[𝑍𝑚𝑍𝑖𝑍
2
𝑗 ]. The matrix Δ = [𝛿𝑖,𝑗 ] is the inverse of Λ’s

principal submatrix composed of the 𝑚-th, 𝑖-th and 𝑗-th rows
and columns of Λ, whereas the matrix Ψ = [𝜓𝑖,𝑗 ] is the
inverse of Λ’s principal submatrix composed of the 𝑚-th, 𝑛-
th, 𝑖-th and 𝑗-th rows and columns of Λ,

Δ =

⎡
⎣ 1

√
𝜌𝑚𝑖

√
𝜌𝑚𝑗√

𝜌𝑖𝑚 1
√
𝜌𝑖𝑗√

𝜌𝑗𝑚
√
𝜌𝑗𝑖 1

⎤
⎦
−1

,

Ψ =

⎡
⎢⎢⎣

1
√
𝜌𝑚𝑛

√
𝜌𝑚𝑖

√
𝜌𝑚𝑗√

𝜌𝑛𝑚 1
√
𝜌𝑛𝑖

√
𝜌𝑛𝑗√

𝜌𝑖𝑚
√
𝜌𝑖𝑛 1

√
𝜌𝑖𝑗√

𝜌𝑗𝑚
√
𝜌𝑗𝑚

√
𝜌𝑗𝑖 1

⎤
⎥⎥⎦
−1

. (23)

The exactness of (21)-(22) arise from the fact that both
matrices Δ and Ψ are tridiagonal matrices due to (20) [27,
Section IV]. Introducing (21)-(22) into (14), one obtains the
closed-form expression for 𝐸[𝑍4], which is omitted here
for brevity. Combining (13)-(14) into (12), one obtains the
unknown parameters Ω𝑅 and 𝑚𝑅 for the statistics of 𝑅.

The assumption of equal average powers, Ω𝑘 = Ω𝑍 ,
1 ≤ 𝑘 ≤ 𝐿, again renders independence of 𝑚𝑅 from Ω𝑍 for
the exponential correlation model. Under such assumptions,
Table II displays the values of 𝑚𝑅 for several illustrative
combinations of 𝜌, 𝐿 and 𝑚𝑍 .

C. Arbitrary correlation model

In the general case of arbitrary branch correlations, the cor-
relation matrix Λ is approximated by its appropriate Green’s
matrix, C, utilizing the method presented in [27, Section
IV]. Since principal submatrices of Green’s matrices are also
Green’s matrices, the matrices Δ and Ψ, defined by (23), are
determined to be tridiagonal, yielding direct applicability of
the results presented in Section II.B to determine the unknown
parameters Ω𝑅 and 𝑚𝑅 for the statistics of 𝑅. Thus, the
statistics of 𝑍 are approximated by the statistics of 𝑅, whose
arbitrary correlation matrix Λ is approximated by the Green’s
matrix C. In the following subsection, we illustrate the highly
accurate approximation to the PDF of 𝑍 facilitated by this
approach.

D. Validation via statistical goodness-of-fit tests

We now statistically validate the proposed PDF approxima-
tions for equal, exponential and arbitrary branch correlation by
using two different goodness-of-fit tests. The Chi-square (C-
S) and Kolmogorov-Smirnov (K-S) tests provide two different
statistical metrics, 𝜒2𝑛 and 𝐷𝑛, which describe the discrepancy
between the observed samples of 𝑍 and the samples expected
under the analytical distribution (7)-(8).

Each metric is averaged over 100 statistical samples, where
each statistical sample comprises of 10000 independent ran-
dom samples of 𝑍 . The random samples of 𝑍 are generated
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TABLE III
SIGNIFICANCE LEVELS OF C-S AND K-S TESTS FOR GOODNESS

OF FIT BETWEEN THE EXACT AND THE APPROXIMATIVE DISTRIBUTIONS OF FIG. 1

𝑚𝑧 = 1 𝑚𝑧 = 3
𝜌 𝐿 = 2 𝐿 = 5 𝐿 = 2 𝐿 = 5

𝛼𝐶𝑆 𝛼𝐾𝑆 𝛼𝐶𝑆 𝛼𝐾𝑆 𝛼𝐶𝑆 𝛼𝐾𝑆 𝛼𝐶𝑆 𝛼𝐾𝑆

0.2 0.004 0.02 0.17 0.06 < 0.001 < 0.001 < 0.001 < 0.001
0.7 0.04 0.03 0.2 0.18 < 0.001 < 0.001 < 0.001 < 0.001

TABLE IV
SIGNIFICANCE LEVELS OF C-S AND K-S TESTS FOR GOODNESS

OF FIT BETWEEN THE EXACT AND THE APPROXIMATIVE DISTRIBUTIONS OF FIG. 2

𝑚𝑧 = 1 𝑚𝑧 = 3
𝜌 𝐿 = 2 𝐿 = 5 𝐿 = 2 𝐿 = 5

𝛼𝐶𝑆 𝛼𝐾𝑆 𝛼𝐶𝑆 𝛼𝐾𝑆 𝛼𝐶𝑆 𝛼𝐾𝑆 𝛼𝐶𝑆 𝛼𝐾𝑆

0.2 < 0.001 0.02 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
0.7 0.08 0.04 0.02 0.17 < 0.001 < 0.001 < 0.001 < 0.001
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Fig. 1. Exact (obtained by simulation) and the approximative analytical
PDFs to the sum of equally correlated Nakagami-𝑚 RVs with equal average
powers, when Ω𝑍 = 1

by computer simulations of correlated Nakagami-𝑚RVs based
on the method proposed in [28, Section VII].

For each metric, we calculate the significance level 𝛼 from
the C-S and K-S distributions, respectively denoted as 𝛼𝐶𝑆

and 𝛼𝐾𝑆 . The significance level 𝛼 represents the probability of
rejecting the tested null hypothesis (𝐻0: ”the random samples
of 𝑍 , obtained from (1), belong to the distribution given by
(7)-(8)”), when it is actually true. The small values of 𝛼
indicate a good fit.

Note that, significance levels 𝛼 less then 0.2 still indicate a
good fit, due to the rigourousness of both C-S and K-S tests
in accepting the null hypothesis 𝐻0.

1) Equal and exponential correlation: For the equal and
exponential correlation models, the goodness-of-fit testing is
conducted for combinations of the followings input parame-
ters: 𝐿 = 2 and 5,𝑚𝑍 = 1 and 3, 𝜌 = 0.2 and 0.7, whereas the
average powers of 𝑍𝑘 are assumed equal to unity (Ω𝑍 = 1).
The needed fading parameter 𝑚𝑅 of distribution (7)-(8) is
obtained directly from Tables I and II, whereas the average
power Ω𝑅 is calculated from (12).

Figs. 1 and 2 depict the excellent (visual) match between the
histogram obtained from generated samples of 𝑍 and the pro-
posed approximation, for the cases of equal and exponential
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Fig. 2. Exact (obtained by simulation) and the approximative analytical
PDFs to the sum of exponentially correlated Nakagami-𝑚 RVs with equal
average powers, when Ω𝑍 = 1

correlation models, respectively. Tables III and IV complement
Figs. 1 and 2, by presenting the significance levels 𝛼 for
the corresponding input parameters’ combinations. The Table
III and the Table IV entries reveal the very low significance
levels 𝛼 for all input parameters’ combinations, thus proving
an excellent goodness of fit in statistical sense.

2) Arbitrary correlation: For illustrative purposes, we use
same two example correlation matrices from [27, Sections V.B
and V.D], Σ3 lin and Σ4 circ, here denoted as Λ1 and Λ2,
respectively. They are approximated by their Green’s matrices
𝐶3 lin and 𝐶4 circ, here denoted as C1 and C2, respectively.

Using C1 and C2, one obtains the needed tridiagonal
matrices Δ and Ψ from their definitions given by (23). The
required joint moments are then calculated from (21) and (22),
which are then substituted into (13) and (14) to calculate
𝐸[𝑍2] and 𝐸[𝑍4], and then (12) is used to describe the
statistics of 𝑅.

Fig. 3 depicts the excellent (visual) match between the
histogram obtained from generated samples of 𝑍 and the
proposed approximation (7)-(8), for the two example corre-
lation matrices Λ1 and Λ2. Table V complements Figs. 3,
by revealing the very low significance levels 𝛼𝑠, thus again
proving an excellent goodness of fit.
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TABLE V
SIGNIFICANCE LEVELS OF C-S AND K-S TESTS FOR GOODNESS OF FIT

BETWEEN EXACT AND APPROXIMATIVE DISTRIBUTIONS OF FIG. 3

𝑚𝑧 = 1 𝑚𝑧 = 3
𝛼𝐶𝑆 𝛼𝐾𝑆 𝛼𝐶𝑆 𝛼𝐾𝑆

Λ1 0.19 0.18 < 0.001 < 0.001
Λ2 0.12 0.11 < 0.001 < 0.001
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Fig. 3. Exact (obtained by simulation) and the approximative analytical
PDFs to the sum of correlated Nakagami-𝑚 RVs with equal average powers,
when Ω𝑍 = 1), and correlation matrices Λ1 and Λ2

E. Validation in case of maximal correlation

We now consider the case of maximal correlation coefficient
between any pair of Nakagami-𝑚 envelopes 𝑍𝑖 and 𝑍𝑗 , i.e.,
𝜌𝑖𝑗 = 1. It indicates a perfect linear relationship between these
pairs, which, after applying the model from [16, Eq. (37)], can
be defined as 𝑍𝑖 =

√
Ω𝑖 𝑍0 for 1 ≤ 𝑖 ≤ 𝐿, where 𝑍0 is an

auxiliary Nakagami-𝑚 RV with unity average power and same
fading parameter𝑚𝑧 . After replacing the latter expression into
(1), 𝑍 is transformed into a Nakagami-𝑚 RV with fading
parameter 𝑚𝑧 and average power of

𝐸[𝑍2] =

(
𝐿∑

𝑖=1

√
Ω𝑖

)2

=

𝐿∑
𝑖=1

𝐿∑
𝑗=1

√
Ω𝑖Ω𝑗 , (24)

which agrees with (13) when 𝜌𝑖𝑗 → 1.
Replacing 𝜌𝑖𝑗 = 1 into (6), the 𝐿 − 1 eigenvalues of the

matrix Λ turn up equal to 0, except 𝜆1 = 𝐿. After plugging
these eigenvalues into (5), 𝑅 is transformed into a Nakagami-
𝑚 RV with fading parameter 𝑚𝑅 and average power 𝐿Ω𝑅.
After the moment matching, Ω𝑅 and𝑚𝑅 can be obtained from
(12), as

Ω𝑅 =
1

𝐿

𝐿∑
𝑖=1

𝐿∑
𝑗=1

√
Ω𝑖Ω𝑗, 𝑚𝑅 =

(𝐸[𝑍2])2

𝐸[𝑍4]− (𝐸[𝑍2])2
= 𝑚𝑧 ,

(25)
respectively, where the latter equality is attributed to the
definition of the Nakagami-𝑚 fading parameter, given by [1,
Eq. (4)].

Thus, maximal correlation yields (7)-(8) as an accurate
distribution of 𝑍 , when our moment matching approach is
applied. This conclusion further validates our approach.
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Fig. 4. Exact and approximate error probabilities of an EGC receiver with
correlated Nakagami-𝑚 branches, when 𝑚𝑧 = 2, 𝜇 = 0 and 𝜌 = 0.7

III. APPLICATION TO THE PERFORMANCE ANALYSIS OF

EGC RECEIVERS

We now consider a typical 𝐿-branch EGC diversity receiver
exposed to slow and flat Nakagami-𝑚 fading. The envelopes of
the branch signals 𝑍𝑘 are non-identical correlated Nakagami-
𝑚 random processes with PDFs given by (2), whereas their
respective phases are i.i.d. uniform random processes. Each
branch is also corrupted by additive white Gaussian noise
(AWGN) with power spectral density 𝑁0/2, which is added
to the useful branch signal. In the EGC receiver, the random
phases of the branch signals are compensated (co-phased),
equally weighted and then summed together to produce the
decision variable. The envelope of the composite useful sig-
nal, denoted by 𝑍 , is given by (1), whereas the composite
noise power is given by 𝜎2𝐸𝐺𝐶 = 𝐿𝑁0/2, resulting in the
instantaneous output SNR given by

𝛾𝐸𝐺𝐶 =
𝑍2

2𝜎2𝐸𝐺𝐶

=
1

𝐿𝑁0

(
𝐿∑

𝑘=1

𝑍𝑘

)2

=

(
𝐿∑

𝑘=1

𝐺𝑘

)2

(26)

where RVs 𝐺𝑘 = 𝑍𝑘/
√
𝐿𝑁0, 1 ≤ 𝑘 ≤ 𝐿, form a set of 𝐿 non-

identical equally correlated Nakagami-𝑚 RVs with 𝐸[𝐺2
𝑘] =

𝛾𝑘/𝐿, same fading parameters 𝑚𝑍 and correlation coefficient
𝜌𝑖𝑗 between branch pair (𝑖, 𝑗). Note that 𝛾𝑘 = Ω𝑘/𝑁0 denotes
the average SNR in 𝑘-th branch.

Using the results from Section II, the MGF and the PDF of
(26) can be approximated using (5) and (7)-(8), respectively,
when Ω𝑅 is replaced by 𝛾𝑅 = Ω𝑅/(𝐿𝑁0). These approxima-
tions are then used to determine the outage probability 𝐹𝛾𝐸𝐺𝐶

and the error probability 𝑃𝐸𝐺𝐶 of an 𝐿-branch EGC systems
in correlated Nakagami-𝑚 fading with high accuracy.

A. Outage probability

The outage probability of the EGC system with arbitrary
correlated Nakagami-𝑚 fading branches, whose output SNR
drops below threshold 𝑡, is approximated by the known outage
probability expressions of an equivalent MRC system [23, Eq.
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Fig. 5. Exact and approximate error performance of an EGC receiver with
correlated Nakagami-𝑚 branches, when 𝑚𝑧 = 2, 𝜇 = 0.3 and 𝜌 = 0.7

(28)], [24, Eq. (13)],

𝐹𝛾𝐸𝐺𝐶 (𝑡) ≈ 𝐹𝛾𝑀𝑅𝐶 (𝑡)

=
1

2
− 1

𝜋

∫ ∞

0

sin
[
𝑚𝑅

∑𝐿−1
𝑘=0 arctan

(
𝑥Ω𝑅𝜆𝑘

𝑚𝑅

)
− 𝑥𝑡

]
∏𝐿−1

𝑘=0

[
1 +
(
𝑥Ω𝑅𝜆𝑘

𝑚𝑅

)2]𝑚𝑅/2

𝑑𝑥

𝑥

=
1

Γ(1 + 𝐿𝑚𝑅)

(
𝑚𝑅

Ω𝑅
𝑡

)𝐿𝑚𝑅 1

det(Λ)

×Φ
(𝐿)
2

(
𝑚𝑅,𝑚𝑅, . . . ,𝑚𝑅; 1 + 𝐿𝑚𝑅;

− 𝑚𝑅

Ω𝑅𝜆1
𝑡,− 𝑚𝑅

Ω𝑅𝜆2
𝑡, . . . ,− 𝑚𝑅

Ω𝑅𝜆𝐿
𝑡

)
. (27)

For the equal correlation model, (27) can be simplified using
[31, Eq. (2.1.3(1))].

B. Average error probability

The average error probability of the correlated Nakagami-𝑚
EGC system with BPSK modulation / coherent demodulation
is approximated using the available expressions for the average
error probability of the equivalent MRC systems. Based on
[30, Eq. (9.11)] and [24, Eq. (17)], the error performance of
this EGC system is alternatively approximated as

𝑃𝐸𝐺𝐶−𝐵𝑃𝑆𝐾 ≈ 𝑃𝑀𝑅𝐶−𝐵𝑃𝑆𝐾 =
1

𝜋

∫ 𝜋/2

0

𝑀𝑅2

( −1

sin2 𝜃

)
𝑑𝜃

(28)

=
Γ(𝐿𝑚𝑅 + 1/2)

2
√
𝜋Γ(𝐿𝑚𝑅 + 1)

(
𝑚𝑅

Ω𝑅

)𝐿𝑚𝑅
(

1

det(Λ)

)𝑚𝑅

×𝐹 (𝐿)
𝐷

(
𝐿𝑚𝑅 + 1/2,𝑚𝑅, . . . ,𝑚𝑅;𝐿𝑚𝑅 + 1;

− 𝑚𝑅

Ω𝑅𝜆1
,− 𝑚𝑅

Ω𝑅𝜆2
, . . . ,− 𝑚𝑅

Ω𝑅𝜆𝐿

)
. (29)

In (28), 𝑀𝑅2(⋅) is replaced with the MGF given by (5).
In (29), 𝐹 (𝐿)

𝐷 (⋅) denotes the Lauricella 𝐹𝐷 hypergeometric
function of 𝐿 variables, defined in [33] and [24, Eq. (18)].
For the equal correlation model, the average error probability
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Fig. 6. Exact and approximate error performance of an EGC receiver with
correlated Nakagami-𝑚 branches, when correlation is described by correlation
matrices Λ1 and Λ2, 𝑚𝑧 = 2 and 𝜇 = 0

can be calculated using [22, Eq. (32)], which is a special case
of (29).

Note that (29) is here presented to demonstrate existence of
an exact closed-form solution, whereas (28) is much more
convenient for accurate and efficient numerical integration.
For example, the average error probability may be obtained
by applying the Gauss-Chebyshev quadrature rule [34, Eq.
(25.4.38)] over (28). In the case of the balanced diversity
branches with equal or exponential correlation, the combina-
tion of this quadrature rule with Tables I and II allows efficient
and extremely accurate evaluation of the EGC performance.

The average error probability of correlated Nakagami-
𝑚 EGC system with BFSK modulation / non-coherent de-
modulation is approximated by known expression of the
equivalent MRC system [26, Eq. (16)], 𝑃𝐸𝐺𝐶−𝐵𝐹𝑆𝐾 ≈
𝑃𝑀𝑅𝐶−𝐵𝐹𝑆𝐾 = 1

2𝑀𝑅2(− 1
2 ), where 𝑀𝑅2(⋅) is given by (5).

C. Validation via Monte-Carlo simulations

Next, we illustrate the tightness of the error performance of
an correlated Nakagami-𝑚 EGC system with BPSK modula-
tion / coherent demodulation to that of the equivalent MRC
system. The results for the actual EGC system are obtained
by Monte-Carlo simulations, whereas those of the equivalent
MRC system are obtained using (28).

1) Equal and exponential branch correlation: Figs. 4 and 5
displays the comparative error performance of the actual EGC
and the equivalent MRC systems, for several combinations
of (𝜌, 𝐿,𝑚𝑍 ,Ω𝑘). In order to accommodate unequal average
branch powers (thus, unequal average branch SNRs), we used
the exponentially decaying profile, modelled as

Ω𝑘 = Ω1 exp(−𝜇(𝑘 − 1)), 1 ≤ 𝑘 ≤ 𝐿 , (30)

where Ω1 is the average power of branch 1 and 𝜇 is the
decaying exponent, with 𝜇 = 0 denoting the case of branches
with equal power (i.e., the balanced branches).

2) Arbitrary branch correlation: Fig. 6 depicts the com-
parative error performances of the EGC with same correlation
matrices from Section II.D, Λ1 and Λ2, and the equivalent
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MRC system with respective Green’s matrices C1 and C2.
The high accuracy of our approach is maintained for arbitrary
branch correlations.

IV. CONCLUSIONS

A tight closed-form approximation to the distribution of the
sum of correlated Nakagami-𝑚 RVs was introduced for the
case of identical and integer fading parameters. The proposed
method approximates this distribution by using the statistics of
the square-root of the sum of statistically independent Gamma
RVs. Examples indicate that the new approximation is highly
accurate over the entire range of abscissas. To demonstrate
this more rigorously, the proposed distribution is tested against
the computer generated data by the use of the Chi-square
and the Kologorov-Smirnov goodness-of-fit tests. In case of
maximal correlation, the proposed distribution becomes the
exact distribution.

The presented approach allowed to successfully tackle
the famous problem of analytical performance evaluation of
an EGC system with arbitrarily correlated and unbalanced
Nakagami-𝑚 branches. The significance of the presented
results is underpinned by the existence of a large body of liter-
ature dealing with MRC performance analysis, which permits
highly accurate and efficient EGC performance evaluation.

APPENDIX A

Using [31, Eqs. (9.212 (1)) and (7.622 (1))], one has the
following identity

𝐽(𝑚, 𝑎, 𝑝, 𝑞) =
1

Γ(𝑚)

×
∫ ∞

0

𝑢𝑚−1𝑒−𝑢
1𝐹1

(
−𝑝
2
;𝑚;−𝑎𝑢

)
1𝐹1

(
− 𝑞
2
;𝑚;−𝑎𝑢

)
𝑑𝑢

= (1 + 𝑎)
𝑝
2

(
1 + 2𝑎

1 + 𝑎

) 𝑞
2

2𝐹1

(
𝑚+

𝑝

2
,− 𝑞

2
;𝑚;− 𝑎2

1 + 2𝑎

)
(A.1)

Using [31, Eq. (9.212 (3)), pp. 1023] with some simple alge-
braic manipulations, the general form (18) of the coefficient
𝑊 (2, 1, 1) can be simplified as

𝑊 (2, 1, 1) = 𝑚𝑧

(
Γ(𝑚𝑧 + 1/2)

Γ(𝑚𝑧)

)2( 1−√
𝜌

1 + (𝑁 − 1)
√
𝜌

)𝑚𝑧

×
[
𝐽(𝑚𝑧 , 𝑎, 1, 1) +

𝑎(𝑚𝑧 + 1/2)2

𝑚2
𝑧

× 𝐽(𝑚𝑧 + 1, 𝑎, 1, 1) +
𝑎

4𝑚2
𝑧

𝐽(𝑚𝑧 + 1, 𝑎,−1,−1)

−𝑎(𝑚𝑧 + 1/2)2

𝑚2
𝑧

𝐽(𝑚𝑧 + 1, 𝑎,−1, 1)

]

(A.2)

where 𝑎 =
√
𝜌/(1 + (𝑁 − 1)

√
𝜌)

APPENDIX B

The unknown joint moments in (14), 𝐸[𝑍2
𝑚𝑍𝑖𝑍𝑗 ],

𝐸[𝑍𝑚𝑍
2
𝑖 𝑍𝑗], 𝐸[𝑍𝑚𝑍𝑖𝑍

2
𝑗 ] and 𝐸[𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 ] can be calcu-

lated from [14, Eqs. (11) and (12)]. Here we derive their
simpler and computationally more efficient alternatives. The

alternative to [14, Eq. (12)] is derived directly from the
definition of the joint moment 𝐸[𝑍1𝑍2𝑍3𝑍4],

𝐸[𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 ] =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

𝑧𝑚𝑧𝑛𝑧𝑖𝑧𝑗

×𝑓𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 (𝑧𝑚, 𝑧𝑛, 𝑧𝑖, 𝑧𝑗)𝑑𝑧𝑚𝑑𝑧𝑛𝑑𝑧𝑖𝑑𝑧𝑗 , (B.1)

where joint pdf of four exponentially correlated Nakagami-𝑚
RVs is expressed as [14, Eq. (9)]

𝑓𝑍𝑚𝑍𝑛𝑍𝑖𝑍𝑗 (𝑧𝑚, 𝑧𝑛, 𝑧𝑖, 𝑧𝑗)

=
24𝑚𝑚𝑧+3

𝑧 ∣Ψ∣𝑚𝑧

Γ(𝑚𝑧)

𝑧𝑚𝑧
𝑚 𝑧𝑛𝑧𝑖𝑧
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𝑗

∣𝜓12𝜓23𝜓34∣𝑚𝑧−1

×𝐼𝑚𝑧−1 (2𝑚𝑧∣𝜓12∣𝑧𝑚𝑧𝑛) 𝐼𝑚𝑧−1 (2𝑚𝑧∣𝜓23∣𝑧𝑛𝑧𝑖)
×𝐼𝑚𝑧−1(2𝑚𝑧∣𝜓34∣𝑧𝑖𝑧𝑗) exp

(
−𝑚𝑧

(
𝜓11𝑧

2
𝑚

+𝜓22𝑧
2
𝑛 + 𝜓33𝑧

2
𝑖 + 𝜓44𝑧

2
𝑗

))
, (B.2)

where Ψ = [𝜓𝑖,𝑗 ] is defined by (23). Now, we integrate [14,
Eq. (11)] over 𝑧𝑚 and 𝑧𝑗 , respectively obtaining∫ ∞

0

𝑧𝑚𝑧+1
𝑚 exp

(−𝑚𝑧𝜓11𝑧
2
𝑚

)
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1

2
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1
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12
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, (B.3)

and∫ ∞

0

𝑧𝑚𝑧+1
𝑗 exp

(−𝑚𝑧𝜓44𝑧
2
𝑗

)
𝐼𝑚𝑧−1 (2𝑚𝑧𝜓34𝑧𝑖𝑧𝑗)

=
1

2
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1

2
;𝑚𝑧;𝑚𝑧

𝜓2
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𝑧2𝑖

)
. (B.4)

We then use the series expansion of the modified Bessel
function of first kind [31, Eq. (8.445)] that allows to separate
the integrations per variables 𝑧𝑛 and 𝑧𝑖, yielding (22). A
similar procedure yields to an alternative of [14, Eq. (11)]
given by (21).
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