
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-30-2003

A new method to select working sets for Decomposition
Methods solving Support Vector Machines

D.Lai, N.Mani and M.Palaniswami

A new method to select working sets for
Decomposition Methods solving Support Vector

Machines
*D.Lai , +M.Palaniswami ,*N.Mani

*Dept. of Electrical and Computer Systems Engineering
Monash University, Clayton, Vic. 3168, Australia.
+Dept. of Electrical and Electronic Engineering,

The University of Melbourne, Vic. 3010, Australia.
{daniel.lai,n.mani@eng.monash.edu.au,swami@ee.mu.oz.au}

Abstract: In this report, we propose a iteration measure to determine a better working set choice for the decomposition
method. The decomposition method generally solves a sequence of sub problems instead of the entire problem at each
iterative step. This makes it an ideal optimization method for solving the Support Vector Machine classifier, which is usually
trained on a large dataset using machines with limited processing memory. The rate of convergence of the decomposition
algorithm depends largely on the order of the sub problems solved and has been shown to be linear in the worst case. Our
iteration measure determines the amount of overstep if the update on an iterate causes it to exit the feasible region. We then
choose a working set that minimizes this amount of overstep, there by also increasing the step towards the minimum of the
objective function. We report some initial results, which show a good improvement to the rates of convergence for our
benchmark datasets.

I. INTRODUCTION
The Support Vector Machines (SVM) developed by Vapnik[1] and co-workers has been shown to be a powerful
supervised learning tool. The standard soft-margin Support Vector Machine is a binary classifier applied to classify a
data set defined as,

 (1)
1 1 2 2

i

={(,), (,)...(,)}

{1, 1}

Θ

∈
= −

l l
n

i

y y y

y

x x x

x R

The SVM formulation is essentially a regularized minimization problem leading to the use of Lagrange Theory and
quadratic programming techniques. The formulation defines a boundary separating two classes in the form of a linear
hyperplane in data space where the distance between the boundaries of the two classes and the hyperplane is known as
the margin of the hyperplane. This idea is further extended for data that is not linearly separable; where it is first
mapped via a nonlinear function to a higher dimension feature space. Maximizing the margin of the hyperplane in either
space is equivalent to maximizing the distance between the class boundaries. Vapnik[1] suggests that the form of the
hyperplane, f x be chosen from family of functions with sufficient capacity. In particular, F contains functions for
the linearly and non-linearly separable hyperplanes;

() F∈

 1

+

+

m

 (2) ()
=

= ∑
1

l

i i
i

f x w x b

 (3) () ()φ
=

= ∑
1

l

i i
i

f x w x b

The weight vector, w in (3) is no longer the same expansion as in the linearly separable case (2). In fact, the non-linear
mapping and defines the mapping from data space to feature space. Hence the weights

in feature space will have a one to one correspondence with the elements of

:φ ⊂ ℜ →ℜnx [), 1,∈ ∞n m

()φ x . Now for separation in feature space,
we would like to obtain the hyperplane with the following properties;

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

 (4)

()

()
()

1
()

0 : 1

0 : 1

ϕ
=

= +

> ∀ = +

< ∀ = −

∑
l

i i
i

i

i

f w b

f i

f i

x x

x

x

y

y

The conditions in (4) can be described by a strict linear discriminant function, so that for each element pair in Θ , we
require that;

 ()
l

i i i
i

y w bϕ
=

 + ≥
 
∑ x

1
1 (5)

The distance from the hyperplane to a support vector is 1
w

and the distance between the support vectors of one class to

the other class is simply 2
w

 by geometry. The soft-margin minimization problem relaxes the strict discriminant in (5)

by introducing slack variables, iξ and is formulated as;

() 2

1 1

i
1

1minimize =
2

P.1
 (()+) 1+

 subject to
1..

l l

i i
i i

l

i i i
i

w C

y w b

i l

ξ

ϕ

= =

=


ℑ +


 ≥  ∀ = 

∑ ∑

∑

w

x ξ
 (6)

We now apply Lagrange Theory to solve (6) giving us the Lagrange Primal problem of the following form;

() 2

1 1 1 1

2

1 1 1

1minimize w, = ((()) 1)
2

P.2

1 ((()) 1) 0
subject to 2

, 0 i=1..

l l l l

i i i j j i
i i j i

l l l

i i i j j i
i i j

i i

w y w x b

w y w x b

l

i iα α ϕ ξ

α ϕ ξ

α π

= = = =

= = =





ℑ + + − − +


   ∇ +∇ + − − =   
    
 ≥ ∀

∑ ∑ ∑ ∑

∑ ∑ ∑










π ξ

 (7)

The following dual optimization of a cost function written in terms of Lagrange Multipliers alone is usually
implemented by incorporating the gradient condition into the cost function of P.2 and minimizing the following
Lagrange dual in terms of Lagrange multipliers, α alone;

() ()
i=1 , 1

i

i
1

1minimize = ,
2

P.3 0
subject to

0

l l

i i j i j i
i j

l

i
i

y y K x x

C

y

α α α

α

α

=

=

 ℑ − +


≤ ≤
  = 

∑ ∑

∑

α j



 (8)

The separating hyperplane surface in (4) can now be written in terms of Lagrange Multipliers;

 () ()
1

,
l

i i i
i

f x sign y K x x bα
=


= +

 
∑  (9)

Recent work has shown that variations of the original formulation could be solved using linear programming[2, 3], but
we shall focus on the quadratic program here. Several optimization algorithms are documented in [2] and they are often

 2

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

modified versions of classical optimization methods which have been tailored to solve the Support Vector Machine
problem. A standard fast iterative method is the Newton method that could be applied to solve the constrained
optimization problem. Unfortunately, Newton-methods are not practical for large datasets since they require the
computation of an inverse derivative, which needs to be stored in memory. Even with today’s current memory
standards, 512MB of RAM is only capable of storing 128 million floating-point numbers, which translates to
approximately a 10000 x 10000 matrix.

The decomposition method is one possible solution for situations where processing memory is limited. Instead of
solving the entire problem at each iteration (i.e. updating all n variables for an n-dimensioned problem), the method
decomposes the problem into smaller sub problems and solves them sequentially. The advantage of this is that, we
require only a fraction of the data to solve the sub problems at each iterative step making it possible to store the rest of
the data on disk and to bring it into memory only when required. One such decomposition algorithm is the Sequential
Minimal Optimization (SMO) introduced by Platt[4] which is one of the more efficient training and easy to implement
algorithms around. SMO is a Newtonian decomposition type algorithm that solves sub-problems of two variables at any
one time. However, it has been pointed out that such decomposition algorithms have somewhat slower rates of
convergence compared to the quadratic convergence rates enjoyed by Newton methods[5-7]. Hsu [8], points out that
this is due to the choice of sub-problems to solve which up to now has been rather arbitrary. If solving a sequence of
sub problems makes poor improvement to the objective function, the rates of convergence naturally slow down. It is
clear that the choice of sub problems to solve is central to the success of the decomposition method. Unfortunately,
determining the optimal sub-problems is rather tricky since the algorithm only considers a subset of variables at any one
time [8] and so far, the methods for solving SVMs do not apply any measure of iteration progress to evaluate the
effectiveness of solving a particular sub problem. We believe however that some effort should be spent in finding a
measure to determine the best sub problem to solve; one which when solved gives the greatest improvement to the
objective function at each step. This can be done for a fixed sub problem size, by considering all the possible
combinations of variables which is obviously going to be very computationally inefficient. Much of the current choices
have been trial and error to find the better combination of variables to solve. We refer the reader to some empirical
results and algorithm implementations of SVM decomposition type algorithms [4, 9-11].

 In this report, we address the problem of choosing optimal sub problems to solve so that the rate of convergence of the
decomposition method is increased. We first introduce our idea of iteration momentum which takes into account the
distance which the iterates cross the constraint boundaries when the update rule takes them outside the feasible region.
We then investigate the effect of minimizing momentum and show empirically that we can achieve faster convergence
rates by doing so. We apply our idea to a Newtonian decomposition method which uses an SMO update rule. We note
here that several modern implementations of SMO and SVMlight such as [10] and LibSVM[12] are currently much
faster than the original pseudocodes. However, the newer implementations run a basic combination of the original
update rules using more efficient coding. Our work here focuses on a method to choose optimal working set pairs that
give the best decrease towards the minimum of the cost function. We could further apply the results here to the modern
implementations to increase their convergences rates further.

The outline of this paper is as follows; in the next section, we review the Sequential Minimal Optimization algorithm
and reformulate it in the familiar Newton update on a closed feasible region. In Section 3, we introduce the notion of
momentum in the decomposition setting and investigate momentum minimization in the context of the Newton form.
We show here that determining the actual momentum at each iterative step is computationally expensive, but we could
predict choices of variables which would have near optimal momentum values. In our initial analysis here, we propose a
heuristic set to approximate the momentum minimization idea. The remaining sections will be left for some initial
results and further discussion.

II. THE NEWTONIAN DECOMPOSITION METHOD FOR SUPPORT VECTOR MACHINES

A. Overview of the general Newton Method

We first review the Newton method briefly by defining the general minimization problem of a cost function subject to a
set of constraints;

Definition II.1: General Minimization Problem with Constraints

 () ()()* *

Given a cost(objective) function :

find so that inf

n

α

α

α α α
∈

ℑ ⊂ ℜ →ℜ

∈ ℑ = ℑ (10)

 3

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

Geometrically, the set is a polytope formed by the constraint set on the minimization problem and usually referred to
as the feasible region since the solution vector, *α must lie in this region. The minimization problem can easily be
converted to a maximization problem by optimizing the negative of the cost function. •

The parallel chord method[5] for a multivariable function is the following update rule;

 ()1 1t t M tα α+ −= − ℑ α (11)

The simplest matrix M is a diagonal matrix with elements, which actually solves n-functions in 1 dimension.
Newton’s method uses the derivative of the function

iim
ℑ as M in order to increase the step towards the minimum. We

now have the well-known Newton method[13, 14] update written as,

 () ()11t t t tα α α

−+ = −∇ℑ ℑ α (12)
We note however that the Newtonian method requires the calculation of the inverse derivative of the cost function,
which requires a substantial amount of memory to store for large datasets. This has led to the use of decomposition
methods, which break the main problem down into a series of smaller problems that can be loaded into memory as
required. We give a more formal definition of the decomposition method and then review a Newtonian Decomposition
algorithm.

Definition II.2: The Generalized Decomposition Method

Given the following problem;

 (13)
()min/ max

 , N

ℑ

∈ ∈ℜ

U

U

The decomposition method solves the problem by decomposing the objective function ()ℑ U into m-sub-problems

 and solving each sub-problem independently. We refer to the subspaces

as the sub domains or working sets of ℑ
() () ()1 1 2 2, ... m mℑ ℑ ℑu u u , 1..k ku k∈ ∀ = m

l

()U •

Definition II.2: The Newtonian Decomposition Method
Let the sequence of working sets; { be presented to the decomposition algorithm. Then the Newtonian
Decomposition method applies the Newtonian update rule to each element of the sub domain so that ;

}iu

iu 0, 1..t i∀ > =

()
()

1
i i

t t+ ℑ
= −

∇ℑ

u
u u

u

when solving the sequence of m-sub-problems () () ()1 1 2 2, ... m mℑ ℑ ℑu u u •

The one main concern with the decomposition method is that solving sub problems might cause oscillations between
locally optimal solutions thus making the convergence of a general decomposition method not easy to prove.
Nevertheless, in the case of Support Vector Machines, several researchers have attempted to prove convergence for
specific decomposition algorithms under several assumptions[15-18]. Perhaps this is easier to do since from (8), the
feasible region for solutions, is in a convex polyhedral defined by;

1

, 0
n

i i i
i

y Cα α α
=

  = ≤ ≤ 
  
∑ i∀ .

In actual fact, we have shown that the optimal solution vector lies on a hyperplane bounded by a hypercube [19]. The
convexity of the feasible region then guarantees a global unique solution and possibly reduces the chances of
oscillations between local minima (NB: There is no local minima, but computational precision could cause “local”
minima around the optimal solution and cause unnecessary iterations even though the optimal solution has already been

 4

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

obtained). We believe that as long as the step is towards the minimum of the cost function, the SVM decomposition
algorithms should converge.

B. SMO: A Newtonian Decomposition Method

We review the update rule used in SMO[4] which we show to be a hybrid element-wise Newton method in a
decomposition algorithm setting. For the sake of simplicity, we will adopt the notations used by Platt in the original
implementation for this summary. The working set size in SMO is fixed to two in order to enforce the equality
constraint in (8) at every step of the iteration. We denote the working set as;

 { }1 2 1 2, ,Wα α α α α= ∈ℜ (14)

 Whenever we update the value of two multipliers, SMO maintains the equality constraint by ensuring;

 (15)
1 1 2 2

1 2 1 2

1 2 1 2

 if
where

 if

y y k
k y y
k y y

α α
α α
α α

+ =

+ = =
 − = ≠

We make use of (15) to express the following for some iterative step, t where t ; 0>

 1 2
1 1

1 2 1 2
t t t t

s y y

s sα α α α+ +

=

+ = + = γ

l

 (16)

Platt defines the error of a training point as where, iE

 (17) () 1..i i iE f x y i= − ∀ =

The minimum of the cost function (8) subject to the equality constraint is first found in the direction of an arbitrary

2α while the other multiplier 1α is set to a value that maintains the equality constraint. We can derive the update rule for
SMO by writing the cost function in terms of the working set members;

 2 2
1 2 1 2 11 1 22 2 12 1 2 1 1 1 2 2 2

1 1(,)
2 2 constK K sK y v y vα α α α α α α α α αℑ = − − + + + + + + ℑ (18)

()

()

1 1 1 1 1 2
3

3 , 3

where

1 ,
2

l
t t

i j j ij i
j

l l

const i i j i j i j
i i j

v y K f x y K y K

y y K x x

α α

α α α

=

= =

= = − −

ℑ = − +

∑

∑ ∑

2
t

iα

Then, the objective function expressed in 2α entirely is,

2 2
2 2 2 11 2 22 2 12

1 2 1 2 2 2

1 1() () ()
2 2

 () const

s K s K sK s

y s v y v

2 2α γ α α γ α α γ α α

γ α α

ℑ = − + − + − + + −

+ − + + ℑ
 (19)

The minimum of (19) can be found with respect to 2α , by taking the derivative with respect to the multiplier;

()2 11 2 22 2 12 2 12 2 2 2 2 1() () 1sK s K K sK s y v y v sα γ α α α γ α∇ℑ = − − + − − − + − + = 0 (20)

Expanding and substituting for and s γ , we get

() ()
2 2

1
11 22 12 11 22 12 2 1 2 2 1(2) (2) (t t)K K K K K K y f x f x y yα α+ + − = + − + − + − (21)

Finally, after some rearranging we obtain the update rule,

 5

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

2 2

1 1 2
2

11 22 12

()
(2

t t E E
y

)K K K
α α+ −

= +
+ −

 (22)

In order to ensure that 1α ∈ , we enforce the following;

 (23)

1
2

1 1 1
2 2 2

1
2

t

t t t

t

UB if UB
if LB UB

LB LB

α
α α α

α

+

+ + +

+

≥
= <
 ≤

<

y

y

where;

 (24)

()
()
()
()

1 2 1 2

2 1 1 2

1 2 1 2

2 1 1 2

min , if

min , if

max 0, if

max 0, if

C y
UB

C C y y

C y
LB

y y

α α

α α

α α

α α

+ == 
+ − ≠
+ − == 
− ≠

The update for 1α is then found by using (16);

 (25) 1

1 1 2 2(t t t t boundedsα α α α+ = + − 1,)+

It can be seen here that the equality constraint is enforced at each step of the iteration through the use of (25). From
(22), the Newton form is not immediately obvious, so we write the derivatives of the objective function (8) as;

 ()2 2 1 2() y E Eα∇ℑ = − (26)

 ()2 12 22() 2 11K K Kαℑ = − −∇ ∇ (27)

Then the update rule (22) can be written as;

()

1 1 2 2
2 2 2 2

11 22 12 2

() (
(2) (

t t tE E
y

K K K
α

α α α
α

+ − ∇
= + = −

+ − ∇ ∇ℑ
)
)

ℑ
 (28)

Similarly, we find that the update rule for α1 is also Newton;

()

1 1
1 1

1

()
()

t t α
α α

α
+ ∇ℑ
= −

∇ ∇ℑ
 (29)

We note from (10) that 1 2,α α ∈ implies that the multipliers are bounded at each iterative stage to ensure that they
remain in the feasible region. Therefore, depending on the choice of , the updates are optimal in the direction of the

two multipliers on the feasible region. We recover (12) by setting () ()t tF α α= ∇ℑ and obtain the element-wise
Newton method. We can easily see now from Definition II.1 that the SMO update rule actually solves the minimization
of the derivative of the cost function (8) which is similar to Joachim[11]. The details of the derivation above are
included in the appendix.

III. ITERATION MOMENTUM AND THE POTENTIAL STEP SIZE

A. The Idea of Momentum
It can be seen that (22) and (29) leave the choice of the next working set variables arbitrary as before, that is we can
pick any two variables to solve. The problem with this is that we are only assured the updates of the two variables are
optimal in the Newtonian sense, but we do not know how optimal they were on the entire variable space. In the
Newtonian case, the step is always an improvement as long as we start somewhere in the vicinity of the optimal
solution. We would like some sense of measure to guide us during the iteration process so that at least our arbitrary
choice of working set is “optimal” in some way. In this way, we could thus increase the rates of convergence of the
decomposition method and reduce the training times for the Support Vector Machine.

 6

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

We now introduce the quantity, ∆ to model the effect of (23) when restricting the update in (22) to the feasible region
. We loosely refer to quantity ∆ as the “momentum” of the iterative step but it is a direct measure of the amount of

restriction imposed if the updates on the variables cause them to exit the region . In doing so, we now have a measure
of how “hard” an arbitrary iterative step causes the iterates to hit a constraint boundary. We first derive the necessary
equations and then attempt to give a geometrical interpretation of our momentum quantity.

R
R

Let us first rewrite the update rules for two arbitrary Lagrange Multipliers 1α and 2α by taking into consideration our
proposed iteration momentum.

For an arbitrary 2α we have;

 1 2 1 2
2 2

12 11 22

()
(2)

t t y E E
R

K K K
α α+ −

= −
− −

− ∆ (30)

Then we have for 1α ;

()

()

1 1
1 1 2 2

2
1 2 2

2

2 1 2 1
1 1

2 12 11

()

()
 = ()

()

() ()
 ()

() (2)

t t t t

t t t

t t

s

s R

y E E

22

s R R
K K K

α α α α

α
α α α

α

α
α α

α

+ += + −

 ∇ℑ
+ − − −∆  ∇ ∇ℑ 

∇ℑ −
= + + ∆ = − + ∆

∇ ∇ℑ − −

 (31)

We have the following updates on the working set variables written in element-wise vector notation;

1 2 1
1

1 11
1

2 1 22 2

()

()

t t
t
w t t

y E E
R

y E E
R

α α η
α

α α
η

+
+

+

− − ∆      = = −        −    + ∆ 
 

 (32)

where;

11 2 1
1 2

1
2

11 2 1
1 2

12 11 22

()
 if

 0 if <
()

 if

2

t t

t

t t

y E E
UB UB

R L
y E E

LB LB

K K K

α α
η

α

α α
η

η

+

+

+

− − − ≥
∆ <
 − − − ≤


= − −

B UB
 (33)

We now investigate the effect of momentum by computing the change at each iterative step on the value of the
objective function. Let us make the following substitutions to simplify the exposition.

 1 2 1 2 1 2() ()
 ,

y E E y E E
A R B

η η
−

= − ∆ = R
−

+ ∆ (34)

We then have from (18) the updated cost function in terms of

1 1

1 2,
t t

α α
+ +

;

() () () ()()
() ()

2 21
1 2 1 2 11 1 22 2 1 2 12 1 2

1 1 1 2 2 2

1 1,
2 2

t t t t t t t

t t
const

A B K A K B y y K A B

y A v y B v

α α α α α α α α

α α

+
ℑ = − + − + + − + − + −

+ − + − + ℑ

−
 (35)

To simplify the exposition, we leave out the superscript t and all iterates are assumed to be for the iteration step t. We
now proceed to simplify (35),

 7

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

()

() () ()

()

2 2
1 2 11 1 22 2 1 2 12 1 2 1 1 1 2 2 2

2 2
1 11 2 22 1 2 1 2 12

1 1 2 2

1 2 1 1 2 2

2 2
11 22 1 2 12 1

1 2
2
1 () 2 2 2
2

, ()

1 1 2 2
2 2

constK K y y K y v y v

A B A A K B B K B A AB y y K

Ay v By v

Ay v By v A B

A K B K ABy y K AK

α α α α α α α α

α α α α

α α

α

→ − − + + + + + + ℑ

 + + + − + + − + + − − + 
− −

→ ℑ − − + +

 + + + + −  []

() () ()

() () ()

() ()

11 2 22 1 12 2 12

2 2
1 2 1 1 2 2 1 1 11 2 2 22 1 2 12

1 11 2 22 1 12 2 12

1 2 1 1 1 1 1 11 2 2 2 12 2 2 2 2 2 22 1 1 1 12

1 1 2 2

2 2 2

1, 1 1 2
2

 -

, 1

1
2

BK BK AK

A y v B y v A y y K B y y K ABy y K

AK BK BK AK

A y v y y K y y K B y v y y K y y K

Ay x By x

α α α

α α

α α α α

α α α α α α

φ φ

− + +

 − − − − + + + 

− − −

→ ℑ − + + − − + + −

+ +

() ()() ()()

1

→ℑ

() ()

() () ()

2

2

1 2 1 1 1 2 2 2 1 1 2 2

2

1 2 1 1 2 2 1 1 2 2

1,
2

1,
2

Ay f x y By f x y Ay x By x

Ay E By E Ay x By x

α α φ φ

α α φ φ

  

 → ℑ − − − − + + 

 → ℑ − − + + 

 () () () () 21
1 2 1 2 1 1 2 2 1 1 2 2

1, ,
2

t t Ay E By E Ay x By xα α α α φ φ+  = ℑ − − + +∴ℑ   (36)

The step size or step length denotes the improvement to the cost function with respect to the updates at each iterative
step. We now have step size for this Newtonian Decomposition rule by writing (36) in the following form;

 (37) () ()
1 2

1
1 2 1 2 ,, ,t t

y yMα α α α+
ℑ = ℑ + ∆

Here, ∆ is the step size, which we write as,

1 2,y yM

 () ()
1 2

2

, 1 1 2 2 1 1 2 2
1
2y yM Ay E By E Ay x By xφ φ∆ = − − + +  (38)

We note here that is derived for the minimization of the cost function

1 2,y yM∆ ℑ and can be similarly derived for the
maximization of the cost function . Instead of defining norms on the domain space, we can now investigate the
improvement at each iteration step in greater detail based on the step size .

ℑ

1 ,y yM∆
2

We proceed with our analysis by further substituting for A and B in (38) and to make it easier to follow, we make the
substitution;

 1 2 1 2 1 2() ()
 , D

y E E y E E
C

η η
− −

= =

So that;

 8

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

() () () ()

()

() () () () ()() () ()

()

1 2,

21 2 1 2 1 2
1 1 2 2 1 1 2 2

2 1 1 1 2 2
2 2 1 1

2 2 2 2
1 2 1 2 1 2

2
2 1

2 2 1 1

() () 1
2

() ()

1 2
2

() 1
2

y yM

y E E y E E
R y E R y E C R y x D R y x

E E E E E E R y E y E

C R x D R x C R D R y y x x

E E
R y E y E C

φ φ
η η

η η

φ φ φ φ

η

∆

   − −
 → − −∆ − + ∆ + −∆ + + ∆     

   
 − −

→ − + −∆ − 
 

 + − ∆ + + ∆ + − ∆ + ∆ 

−
→ −∆ − + ()

() () ()()

() () ()()

()()

() ()

2 2
11 22 1 2 12

2

11 22 1 2 12 1 2 12 11 22 1 2 12

2 2 2 22 1 2 1
2 2 1 1 1 1 2 2

2 1
1 11 2 12 2 22 1 12

2 2
2 1

2 2 1 1 1 1 2

2

 2
2

() ()
2 2

()

()
2 2

K D K CDy y K

R K K y y K R C y y K K D K y y K

E E E E RR y E y E y x y x

E E
R y K y K y K y K

E E RR y E y E y x y x

φ φ
η η

η

φ φ
η

+ +

∆
+ + − + ∆ − + −

− − ∆
→ −∆ − − + −

−
− ∆ + − +

− ∆
→ −∆ − + − ()() ()()2 2 1

2 2 22 1 11 2
()R E E

y K y K y y K
η

∆ −
− + − 1 12+

We now have;

() () ()()

()()

1 2

2 2 22 1
, 2 2 1 1 1 1

2 1
1 11 2 22 2 1 12

()
2 2

()

y y
E E RM R y E y E y x

R E E
y K y K y y K

φ φ
η

η

− ∆
∆ = − ∆ − + −

∆ −
− + − +

2 2y x
 (39)

We now have the step size function in terms of momentum,

1 2,y yM∆ R∆ which models how hard the iterates would hit
the constraint boundaries when they are updated using a Newton step. The larger the value of , the larger the
momentum of the iteration or the harder the iterates hit the constraint facet. We note that this general form applies only
to an arbitrary working set

R∆

wα of size 2. It is also clear that ∆ depends on the labels , hence the choice of
our notation for the step size function.

1 ,y yM
2 1 2,y y

If we set , we immediately disregard the existence of boundaries i.e. the region is open and unbounded, we
have;

0R∆ =

2

2 1(
2p

E E
M

η
−

∆ =
)

 (40)

We refer to the function pM∆ as the potential step size or simply the potential function that actually depicts the true

Newtonian step that would be taken if the solution vector lies in the entire lℜ space. In other words, it is the potential
improvement of the objective function if they were no constraints on the variable vector α .

Observation 1: Largest Potential Step

We note that for a positive (semi-positive) definite kernel matrix, ()0 0η η< ≤

wα
 the potential step is always towards the

minimum of the objective function (8) for any arbitrary working set . In the case of a constrained region, the largest
actual step is approximated in [4] by using the maximal violating pair 2 1E−E for an arbitrary . This has
empirically been shown to work well by Platt in the case of the constrained SVM dual in (8). However, in the case of
decomposition for a general optimization problem, we do not know yet whether the largest potential step would actually
guarantee the best improvement to the objective function in a constrained region. The necessary and sufficient
conditions to guarantee this still remains an interesting research topic for us to study further•

wα

 9

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

In this work, we characterize the step size function (39), according to the labels which correspond directly to
choice of

1 2,y y

1 2,α α in the working set, wα . We first list several relationships that would be useful for the following
derivations.

 () ()() () ()() () ()()2

12 11 22 1 2 1 2 1 22 = ,K K K x x x x x xη φ φ φ φ φ= − − − − − = − −φ (41)

() ()() () ()() () ()() () ()()22 11 2 1 2 1 2 1 2 1- ,K K x x x x x x xφ φ φ φ φ φ φ φ= − + = − + x (42)

Case 1: If , we then have from (39), 1 2 1y y= =

() () ()() ()

() () ()() ()

() ()()

2 2 22 1 2 1
1,1 2 1 1 2 22 11 12

2 2 22 1 2 1
2 1 1 2

2 2 22 1
1 2

() ()
2

2 2
() ()

2 2

()
 =

2 2

E E R E ERM R E E x x K K K

E E R E ERR E E x x

E E R x x

φ φ
η η

φ φ η
η η

φ φ
η

− ∆ −∆
∆ = − ∆ − + − − + −

− ∆ −∆
= −∆ − + − − −

− ∆
+ −

 (43)

Case 2: If , we then have from (39), 1 2 1y y= = −

() () ()() ()

() () ()() ()

() ()()

2 2 22 1 2 1
1, 1 2 1 1 2 11 22 12

2 2 22 1 2 1
2 1 1 2

2 2 22 1
1 2

() ()
2

2 2
() ()

 =
2 2

()
 =

2 2

E E R E ERM R E E x x K K K

E E R E ERR E E x x

E E R x x

φ φ
η η

φ φ η
η η

φ φ
η

− −

− ∆ −∆
∆ = − ∆ − + + − − − − − +

− ∆ −∆
+ ∆ − + + −

− ∆
+ +

 (44)

Case 3: If , we then have, 1 2 1 2, 1,y y y y≠ = − =1

() () ()() ()

() () () ()()

2 2 22 1 2 1
1,1 2 1 1 2 11 22

2 2 22 1 2 1
2 1 22 11 1 2

() ()
2 2

() ()
 =

2 2

E E R E ERM R E E x x K K

E E R E E RR E E K K x x

φ φ
η η

φ φ
η η

−

− ∆∆
∆ = − ∆ + + − − − −

− ∆ − ∆
− ∆ + − − + +

−

1−

 (45)

Case 4: If , we then have the symmetry, 1 2 1 2, 1,y y y y≠ = =

() () ()() ()

() () () ()()

2 2 22 1 2 1
1, 1 2 1 1 2 11 22

2 2 22 1 2 1
2 1 22 11 1 2

() ()
2 2

() ()

2 2

E E R E ERM R E E x x K K

E E R E E RR E E K K x x

φ φ
η η

φ φ
η η

−

− ∆∆
∆ = − ∆ − − + + − −

− ∆ − ∆
= + ∆ + + − + +

−

2

 (46)

If we generalize the cases further, we can see that 1y y= and 1y y2≠ give different step sizes and have different
momentum values. This seems to prove the existence of an “optimal” choice of working set to solve in order to give the
best improvement to the objective function. It also seems to suggest that we could predict which cases would most
likely give a better step during the iteration process. For now, we give a geometrical discussion of our momentum idea
in the following section.

 10

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

B. Iteration Momentum in a bounded region

Consider the problem of minimizing an objective function subject to a set of constraints on the problem variables as
given in Definition II.1. We can interpret the set of constraints as boundary planes[20] which form a region lying in
the general space. So, if the problem has n-constraints, the region then has n sides or facets. The solution to the
problem which is a vector of variables

lℜ

{ 1 2, ... l}α α α=α is constrained to lie in this “feasible” region . In the case of
our Support Vector dual problem (8), each training example contributes a constraint and so we can think of the region

as a hyperplane lying in a hypercube for the case where . Now, let us consider a simpler problem where the
region has the following shape as in Fig 1. For illustration purposes, the solution vector

3l >
*α to this minimization

problem is located towards the “bottom” of the feasible region. Suppose we start the algorithm off with an initial guess,
I0 then in the ideal case, we would like the optimization algorithm to follow the path of the thick line (indicated by I1) so
that we would have obtained the solution to the problem in the quickest way. Unfortunately the location of *α is
unknown to the optimization algorithm and a good rule of thumb so far is to follow the strictest path of descent that we
have shown as a series of dashed lines.

I0

I1

Start

α*

Fig 1: An example of a feasible region Q on the α space for a minimization problem where the solution vector *α is denoted by a circle.

Start
I0

Fig 2: An example of the regions where the potential vector α could lie
figure depicts the case for 5 iterative steps.

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami
α*
 when only a subset of it is updated through the decomposition method. The

11

In the case of the decomposition method in Fig 2, only a subset of variables (the working set) is updated at each step
and not the entire variable vector. Since the choice of working set is arbitrary at each iterative step, we denote the
possible locations of the variable vector as circular regions that we refer to as potential regions. The radius of this region
is the largest possible step towards the solution vector if the optimal working set was solved. The dashed lines now
represent the path taken by the algorithm that has chosen an arbitrary sequence of working sets. We can see now that in
the case of the decomposition method, the largest potential step (denoted by the radius of the region) does not guarantee
the quickest convergence. From the example diagram, it is possible that there may be more than one choice of working
set, which gives the largest step, and so the vector could possibly lie on the boundary of a potential region and the
next update could send us away from the optimal solution. It is clear that the choice of working sets affects how quickly
we arrive at the solution vector. A bad choice could result in the algorithm zigzagging in the feasible region Q while a
good choice would quickly lead us to the optimal solution vector.

α

Q

Start

I3

I2

I1

Fig 3: Feasible region, Q with minimum point α* after iteration I1 , the

In Fig 3, we show our momentum quantity as the amoun
the vector α to exit the feasible region . In SMO, the
binding the variables to the bounds of the constraints as
However, from Fig 3, we can see that if the amount of m
facet and the choice of working set members may cause
this is to choose a working set that does not cause the ve
amount of overstep. This leads us to the idea of moment
section.

IV. MOMEN

In any iterative algorithm, the idea is always to take the
quickest convergence. This can be done by following t
problem. However in the case of decomposition, we do
are only limited to subsets of the gradient space and if
steepest descent may not necessarily be the best[18]. Th
section.

In the case of our working set, the best that is done so f
second variable such that the step size is maximized[4]
amount of momentum at every iterative step. In
objective function is also maximized. In a geometric

R∆

1 2,α α not only stay within the feasible region but
“softly” as possible. We can see this clearly from Fig.1
closer to the minimum α* compared to I3. We believe t
decomposition method when applied to constrained prob

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami
α*
∆R
 possible positions I2 and I3 for the choice of two arbitrary working sets.

t of overstep, if the update on an arbitrary working set causes
 algorithm always maintains the feasibility of the solution by
in (23). The amount of restriction is never considered further.
omentum is large then our vector α is too close to a boundary

 minimal improvement to the objective function. A solution to
ctor α to exit the region, which can be done by minimizing the
um minimization that is investigated further in the following

TUM MINIMIZATION

 best step towards the minimum of the objective function for the
he direction of steepest descent indicated by the gradient of the
 not have the entire gradient space available to us. Instead, we
the solution vector lies in a constrained region, the direction of
is fact has also been geometrically demonstrated in the previous

ar is to pick the first variable, 1α arbitrarily and then choose the
. We now propose to select a working set, which minimizes the
 doing so, the actual step (39) towards the minimum of the
sense, we want to choose a working set such that the updates
also such that if they hit a constraint boundary they do so as
where the minimum momentum in I2 carries the solution vector
hat this would greatly increase the rates of convergence for the
lems.

12

Unfortunately, the actual momentum is only known after the step is taken or during the computation of the step.
We could explicitly compute it beforehand by considering all the possible combinations of working set pairs at each
iterative step. For examples, this amounts to roughly combinations, which is obviously computationally
expensive! Instead, we propose to use the theoretical optimal value of momentum,

R∆

n 2n
*R∆ to predict the best choice of 2α

which would generate momentum close to the optimal value when they are successfully updated.

A. Theoretical Momentum Minimization

We can then derive ∆ i.e. the optimal ∆ to obtain the minimum at every step. The stationary point of

with respect to ∆ is found by taking the gradient of (39).

*R

R

R
1 2,y yM∆

1 2,y yM∆

() () ()() ()()1 2
2, 2 1

2 2 1 1 1 1 2 2 1 11 2 22 2 1 12
()

0y yM E E
y E y E R y x y x y K y K y y K

R
φ φ

η
∂∆ −

= − − + ∆ − − + − + =
∂∆

The optimum momentum which minimizes the step size function is then,

() ()()
() ()(* 2 1

2 2 1 1 1 11 2 22 2 1 122

1 1 2 2

()1 E E
R y E y E y K y K y

y x y x ηφ φ
)y K

 −
∆ = − + + − + 

 −
 (47)

We now derive mathematically the optimal value of ∆ by examining the cases that could arise with an arbitrary
choice of working set pairs.

1 2,y yM

Case 1: 1 2 1y y= =

() ()()
() ()

() ()()
() ()

* 2 1
2 1 11 22 122

1 2

2 1
2 12

1 2

()1 2

()1 0

E E
R E E K K

x x

E E
E E

x x

ηφ φ

η
ηφ φ

 −
∆ = − + + − 

 −

 −
= − + − = 

 −

K

 (48)

Substituting (48) into (43) gives;

2

* 2 1
1,1

(
2

E E
M

η
−

∆ =
)

 (49)

Case 2: 1 2 1y y= = −

() ()()
() ()

() ()()
() ()

* 2 1
2 1 11 22 122

1 2

2 1
2 12

2 1

()1 2

()1 0

E E
R E E K

x x

E E
E E

x x

ηφ φ

η
ηφ φ

 −
∆ = − + + − − + 

 − +

 −
= − − + = 

 −

K K

 (50)

Substituting (50) into (44) gives;

2

* 2 1
1, 1

(
2

E E
M

η− −

−
∆ =

)
 (51)

Case 3: 1 2y y≠
For 1 21, 1y y= = −

 13

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

() ()()
() ()* 2 1

2 1 22 112

1 2

()1
E E

R E E K
x x ηφ φ

 −
∆ = + + −

 +
K  (52)

() () () ()()

() ()()
() ()

() ()()
()

() ()()
()

()

2 1

2 1

2 2 2* 2 1 2 1
1,1 2 1 22 11 1 2

2 22
22 1

2 1 22 112

1 2

2 2 2
22 1

22 11 22 112 2 2
1 2 1 2

1

() ()
=

2 2

()() 1
2

() ()

 +

E E R E E RM R E E K K x x

E EE E
E E K K

x x

E E E EK K K K
x x x x

x x

φ φ
η η

η ηφ φ

φ φ η φ φ η

φ φ

−

− ∆ − ∆
∆ −∆ + − − + +

 −−
= − + + − 

 +  

− −
− − + −

+ +

− ()()
() ()()

() ()

()
() ()()

()
() ()()

()
() ()()

()
() ()()

()
() ()()

()

2 1 2 1

2

2 2
2 2 1

2 1 22 114

1 2

2 2 2 2 22
22 11 22 112 12 1

2 2 2

1 2 1 2 1 2

2 2 22 2
2 1 22 11 2 1 2 1 22 11

2 2
1 2 1 2

()

2

() ()()

2

() ()
 +

22

E EE E K K
x x

E E K K E E K KE EE E

x x x x x x

E E K K E E E E K K

x x x x

ηφ φ

η φ φ η φ φ η φ φ

φ φ η ηφ φ

 −
+ + − 

 +

− − − −+−
= − − −

+ + +

− − + − −
+ +

+ + () ()()
()

() ()()

()
() ()()

()
() ()()

()
() ()()

()
() ()()

()
()

2 1

2 1

2 2
22 11

2 22
1 2 1 2

2 22 2 2 22
22 11 2 1 2 1 22 11 2 1 22 112 1

2 2 2 2 2
1 2 1 2 1 2 1 2

22
2 1 22 112 1

2
1

()

() () ()()

2 2 2

()()

2 2

E E K K

x x x x

E E K K E E E E K K E E K KE E

x x x x x x x x

E E K KE E

x

φ φ φ φ η

η η φ φ φ φ φ φ η η φ φ

η η φ φ

− −
+

+ +

− − + − − − −−
= − − − +

+ + + +

− −−
= −

+ ()()

2

2

()
() ()()

()
() ()()

()
() ()()

() ()() () ()()
() ()() () ()()

2 1

2 1

2 2 2
22 112 1

2 2 2

2 1 2 1 2

2 2 22
2 1 2 12 12 1

2 2 2

1 2 1 2 1 2

()

2

()() 1 1
2 2 2

E E K KE E

x x x x x

E E x x x xE EE E

x x x x x x

φ φ η φ φ

φ φ φ φ

η φ φ φ φ φ φ

− −+
− −

+ +

− − ++−  = + − + 
  + − +

()
() ()() ()

2 1

2 2 22
2 12 1

2
22 111 2

()()

2

E EE EE E
K Kx xη φ φ

−+−
= − −

−+
 (53)

Case 4: If , we then have the symmetry, 1 2 1 2, 1,y y y y≠ = = 1−

() ()()
() (* 2 1

2 1 22 112

1 2

()1
E E

R E E K
x x ηφ φ

 −
∆ = − + + −

 +
)K  (54)

() () () ()()

() ()()
() ()

() ()()
()

() ()()
()

() ()()
()

2 1 2 1

2 2 2* 2 1 2 1
1, 1 2 1 22 11 1 2

2 2 2 22
22 1

2 1 22 11 22 112 2

1 2 1 2

2
22 1

22 11 2 12 22
1 2 1 2

() ()
=

2 2

() ()() 1
2

() 1
2

E E R E E RM R E E K K x x

E E E EE E
E E K K K K

x x x x

E E
K K E E

x x x x

φ φ
η η

η ηφ φ φ φ η

φ φ η φ φ

−

− ∆ − ∆
∆ + ∆ + + − + +

 − −−
= − + + − − − 

 + + 

−
+ − + + +

+ +
()

2

2 1
22 11

()E E
K K

η
 −

− 
 

 14

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

()
() ()() ()

2 1

2 2 22
2 12 1

2
22 111 2

()()

2

E EE EE E
K Kx xη φ φ

−+−
= − −

−+
 (55)

Generally, our idea of minimizing the momentum when considering a sub set of variables is meant to choose a working
set that when updated, gives the best possible improvement to the objective function value. If we translate this to the
SVM notion, we want to adjust the hyperplane in the quickest possible way such that the margin is maximized and the
number of misclassified points is minimized. The variables or the Lagrange Multipliers of the working set directly
determine the position of the hyperplane and they have a one to one correspondence with the data examples. This
allows us to give in the following some geometrical interpretation of the iteration process with momentum
minimization.

From (48) and (50), we see that if the working set consists of multipliers corresponding to examples of the same class
label, i.e. , the theoretical optimal momentum is zero. This shows that the best step size would be obtained if
they were not allowed to exit the constraint boundaries at all. In geometric terms, we are maximizing the margin of the
hyperplane by changing two multipliers that belong to examples of the same class. Intuitively, when doing so we
definitely want to push the hyperplane towards the opposite half space as much as possible, which means that, the
updated multipliers should ensure that the corresponding points remain in the correct half space.

1y y= 2

In the example of Fig 4, the working set wα chosen for the next update after I0 is depicted with a circle. The initial
hyperplane position is labeled I0 which in iteration terms corresponds to the initial state at t=0. The next iterative step is
shown by the new hyperplane position labeled I1 and the arrows depict the direction of motion for the hyperplane. We
can see that momentum minimization not only results in the updated hyperplane correctly classifying the working set
elements of I0, but forces X1 that was previously misclassified (α1=C or it is at the boundary) to become a non-bound
Support Vector as seen when the updated hyperplane is at I1. Ideally, X2 could also be a non-bound Support Vector but
since it was correctly classified at I0 and I1 (α2=0) then it still has minimum momentum. i.e. The multiplier α2 remained
unchanged at the constraint boundary.

X2

X1

I1

I0

αw

Class 2

Class 1

 Fig 4: Effect of minimizing momentum for two examples of the same class (y1=y2)

However, when the working set pair consists of opposite class examples, i.e. 1y y2≠ , the optimal momentum becomes
more complex. We now have to compromise between finding the maximal margin of separation and the minimization
of misclassified examples between the working set pair. Currently, we believe that the theoretical optimal momentum
for (52) and (54) captures this compromise but have yet been unable to clearly prove it mathematically. The equations
seem to indicate that for the generic case of 1y y2≠ we can at best allow the updated multipliers to hit the boundaries
and not just touch them. We try to get an intuition for this in Fig 5, where the working set variables correspond to the
violators X1 and X2. For the sake of illustration, let us assume that 1 2, Cα α = at 0I which we show in Fig 5. The
updated position of the hyperplane, I1 is shown to correctly classify the two points if the minimum momentum was zero
as with the previous case. However, we can see that at 1I the point 3X that was previously correctly classified by 0I

 15

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

becomes misclassified! It would seem that a better position would be the hyperplane at 2I where now 3X remains
correctly classified and 2X is also in the right half-space. However 1X still remains misclassified (1 Cα =) and would
have some amount of momentum since it previously was at the boundary and the update would have carried it outside
the feasible region. We are hence led to believe that the theoretical equations put a bound on the minimum amount of
momentum that not only gives a better hyperplane position, but also the better step size towards the minimum of the
objective function.

2α

wα

2y y y≠

()1 2mi α α= +

1
t

t

α

= −

= − −

I2

X3

X2

X1

I1 I0

αw

Class 2

Class 1

 Fig 5: Effect of minimizing momentum for two examples of the opposite class (y1 ≠ y1)

B. Approximate Momentum Minimization through heuristic implementation

In the previous section, we computed the theoretical minimized momentum values, *R∆ for the two generic cases of

 and . Some would point out that these are functions of the unknowns 1y y= 2 21y y≠ 1,α and depend very much on
their choice beforehand. This seems to have left us in a quagmire since we cannot determine the working set choice that
exactly minimizes momentum without trying all the possible working set combinations as before. However, this is not
what momentum minimization attempts to do. Recall that in our decomposition setting, we are trying to select the
second variable 2α such that the step size is maximized and the resulting momentum for the pair is also minimized. We
can approximate the minimum momentum by considering the generalized combinations of working sets and then
explicitly computing the conditions on the second variable so that the updated pair has minimal momentum. In the
following, we examine more thoroughly the situations that arise for the generalized cases i.e. and 1y = 1 2 .

1) Working set of examples from the same class

Let us examine first the situations that occur at the Upper Bound (UB) of (33), where UB n ,C .

If 1 0α = and 2 Cα = , then UB 1 2α α= + , then from (33),

 ()

1 2 1

1 2 1
1 1 2

1 2 1
2 1

1

()

()

()
 0 only if

t

y E E
R UB

y E E

y E E CC E
y

η

α α α
η

η
η

−
∆ = − −

−
− +

−
= = −

E

If 2 Cα ≤ , we have then the condition 2 1
1

CE E E
y
η

≤ − < 1 where we now can form our first heuristic rule.

 16

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

H1: If 1 0α = choose 2 Cα = such that 2 1E E≤

We can check that the converse is true since the working set is arbitrary. If 1 Cα = and 2 0α = , then UB 1 2α α= + ,

 ()

1 2 1
1

1 2 1
1 1 2

1 2 1
2 1

()

()

()
 0 only if

t

tt

y E E
R UB

y E E

y E E
E E

α
η

α α α
η

η

−
∆ = − −

−
= − − +

−
= − = =

If 1 Cα ≤ , we have from which the following heuristic follows as a result. 2E E≥ 1

H2: If 1 Cα = choose 2 0α = such that and 2E E≥ 1 1 2y y=

Now, suppose that 10 Cα< < , then UB 1 2α α= + iff 1 2α α+ or 2 C 1α α< − . Then;

 ()

1 2 1
1

1 2 1
1 1 2

1 2 1 2
2 2

1

()

()

()
 0 only if

t

tt

y E E
R UB

y E E

y E E
E E

y

α
η

α α α
η

1
α η

α
η

−
∆ = − −

−
= − − +

−
= − − = = −

This can be further generalized to the condition in the following heuristic;

H3: If 10 Cα< < choose 2 Cα ≤ such that 2 1E E≤

We can show further that for the case when UB C= , a similar heuristic set follows due to the arbitrary choice of

1 2,α α . Note however that the optimal value of momentum from (48) and (50) is * 0R∆ = . If we examine(33), we can
see this likely occurs when both 1 2,α α become non-bound Support Vectors. We could then approximate the working
set which mostly likely gives minimum momentum to consist of 1 20< , Cα α < since in the later stages of the iteration
only the non-bound Support Vectors have yet to be correctly determined. However, we need to compute the value of the
objective function at each step to estimate when the algorithm is in its final stage, so this sort of heuristic is very rough
and is not really computationally efficient.

2) Working set of examples from the opposite class
For the case where , let us first examine the Upper Bound (UB) in (33). Let 1y y≠ 2 }{ 1 2max ,Lα α α= and suppose

1 2α α> and , we then have from (33); 1 1y =

 1 2
1

()
 t E E

R Cα
η
−

∆ = − − (56)

From Case 3, we have

() ()()
() ()

()
() ()()

()
() ()()

()
() ()()

* 2 1
2 1 22 112

1 2

2 1 2 1 22 11
2 2

1 2 1 2

2 1 2 1
2

1 2

()1

()

()

E E
R E E

x x

E E E E K K

x x x x

E E E E

x x

ηφ φ

φ φ η φ φ

ηφ φ

K K
 −

∆ = + + − 
 +

+ − −
= +

+ +

+ −
≤ +

+

()
() ()()

2 1 1 2
2

1 2

(

E E E E

x x ηφ φ

+ −
≤ −

+

)
 (57)

 17

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

since
()
() ()()

22 11
2

1 2

1
K K

x xφ φ

−
≤

+
 and equality exists when ()1 0xφ = .

By equating (56) and (57), we get;

()
() ()()

()
() ()()

2 1
1 2

1 2

2 1
1 2

1 2

1

0

t

t

t

E E
C

x x

E E
C

x x

α
φ φ

α
φ φ

α

+
− ≤

+

+
≤ +

+

→ >

Now since 1 Lα α= , then the choice of 2α becomes 2 Cα ≤ with the maximum value of 2 Cα = . In the case that

1 0α = , we could immediately try 2 0α = so that there is a better chance of minimizing R∆ . We summarize this in the
following two heuristics.

H4: If 1 0α = , choose 2 0α = if . 1 2y y≠
H5: If 1 0α > , choose 2 Cα = if . 1 2y y≠

Conversely, we could also examine the Lower Bound (LB), but due to the arbitrary selection of the working sets, this
would yield similar counterparts to the heuristics H4 and H5. We now list these several additional heuristics in addition
to the requirement in Observation 1 that is we want to choose the working set that minimizes momentum and also gives
the maximal update.

Momentum Minimization Heuristic Set

If , we use the following heuristics to approximately minimize the momentum and such that 1y y= 2 2E E− 1 is
maximal,
H1: If 2 Cα = choose 1 0α = such that 2 1E E≤
H2: If 2 0α = choose 1 Cα = such that 2 1E E≥
H3: If 20 Cα< < choose 1 Cα ≤ such that 1 2E E≤

If , we then use the following heuristics to approximately minimize the momentum and such that 1y y≠ 2 2 1E E− is
maximal,
H4: If 2 0α = , choose 1 0α =
H5: If 2 0α > , choose 1 Cα =

Final: If updating any 1α is still unsuccessful, try any 2α

The last heuristic, simply allows the algorithm to check all possibilities to ensure that the solution is truly optimal. We
note that this is a rough heuristic set that attempts to perform “approximate” momentum minimization. The heuristic set
however imposes a stricter rule for the choice of working sets and no longer contains any random elements as in Platt’s
original implementation of SMO. We note that further calculations would yield more stringent conditions on the bounds
of and which are currently quite loose and based on several approximations. 1E 2E

V. EXPERIMENTAL RESULTS

In order to investigate the performance of momentum minimization, we implemented the basic SMO update rule
together with our heuristic set for the choice of working set members. We refer to our algorithm loosely as Momentum
Minimization Optimization (MMO) that is an attempt to investigate our notion of momentum. We then ran a series of
benchmarks on some well-known datasets to compare with the original SMO results. All experiments were carried out
on a Pentium IV, 1.5 GHz computer with 256MB RAM. The SMO program and MMO were implemented on Visual ++

 18

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

6.0. We recorded the number of iterations and epochs required till convergence was established. Here iterations refer to
the number of successful updates on the working sets and epochs refer to the number of loops which the algorithm goes
through in the main program. MMO uses an SMO update rule with our heuristics for choosing working sets. Hence,
when comparing these two Newtonian decomposition methods, we can compare the number of iterations and epochs to
determine the improvement in performance. We have assumed that they are proportional to other performance measures
such as CPU time, kernel computations or flop counts. We omit these measures here because our machine is different
from Platt’s.

We ran our MMO on the UCI adult data set and the web dataset[21] using the Gaussian kernels with kernel width of 10.
We also compare the performance on our fish data set using different values of C for a Gaussian and Polynomial kernel.
Our fish problem[22] is highly inseparable and the task is to classify 5 species of fish given 1400 examples with 10
attributes each. For this experiment, we trained a binary SVM classifier to classify species 1 against the rest of the
species. All experiments were carried out using a tolerance of 0.001. We note here that our implementation of Platt’s
original pseudocode seems to give very much slower results than what was reported in [4] but nevertheless we compare
our results against that as reported by Platt. For illustrative purposes, we compare the behavior of the negative objective
function (8) in for the UCI 1 dataset.

0

100

200

300

400

500

600

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

Epochs SMO MMO

Fig 6: MMO and SMO: Comparison of objective function behavior for UCI adult 1.

BSV behaviour

0

100

200

300

400

500

600

700

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

Epoch

N
um

SV

SMO BSV

BSV behaviour

480

500

520

540

560

580

600

620

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Epoch

N
um

SV

MMO BSV

 Fig 7: SMO and MMO: Comparison of bound Support Vector behavior for UCI adult 1.

NBSV behaviour

0
50

100
150
200
250
300
350
400

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

Epoch

N
um

SV

SMO NBSV

NBSV behavi our

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E poch

MMO NBSV

 Fig 8: SMO and MMO: Comparison of non-bound Support Vector behaviour for UCI adult 1.

 19

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

0

2000

4000

6000

8000

10000

12000

14000

16000

UCI 1 UCI 2 UCI 3 UCI 4 UCI 5

Ite
ra

tio
ns

MMO SMO

Fig 9: Performance of original SMO against MMO across the UCI adult datasets for Gaussian kernel with C=1.

0

5000

10000

15000

20000

25000

30000

35000

web1 web2 web3 web4 web5

Ite
ra

tio
ns

MMO SMO

Fig 10: Performance of original SMO against MMO across the UCI Web datasets for Gaussian kernel with C=5.

0

500

1000

1500

2000

2500

0.001 0.01 0.1 1 10 100C

Ite
ra

tio
ns

MMO SMO

Fig 11: Performance of original SMO against MMO for fish data set for Gaussian kernel over a range of C.

0

2000

4000

6000

8000

10000

12000

0.001 0.01 0.1 1 10 100C

Ite
ra

tio
ns

MMO SMO

Fig 12: Performance of original SMO against MMO for fish data set for Linear kernel over a range of C.

 20

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

0

2000

4000

6000

8000

10000

12000

0.001 0.01 0.1 1 10 100C

Ite
ra

tio
ns

MMO SMO

 Fig 13: Performance of original SMO against MMO for fish data set for Polynomial kernel over a range of C.

VI. DISCUSSION
In Fig 6, we observe that the SMO algorithm does not improve the objective function significantly when iterating over
non-bound Support Vectors. This heuristic is employed in the second loop of Platt’s algorithm and it causes step-like
behavior that slows down the rate of convergence of SMO. This demonstrates that the wrong choice of working sets
does affect the convergence rates of the decomposition method. However in MMO, the objective function approaches
the optimum value quickly and there is a strict increase in the Wolfe dual at all times. The reason for this can be seen
from Fig 7 and Fig 8, where SMO finds the bounded and non-bounded Support Vectors rather slowly through the
update of a random working set choice. In MMO, the necessary Support Vectors are discovered quickly through the
proper choice of working set variables. Note also that the number of epochs required for convergence is much less in
MMO than in SMO, indicating also that momentum minimization could help speed up the decomposition method.

In the case of the UCI data sets, Fig 9 and Fig 10 we record an improvement of 20%-40% improvement to the number
of iterations required till convergence when using MMO. This seems to empirically indicate that using an
approximation to our momentum minimization idea does allow a somewhat better choice of working sets to be made
during the iteration. However, we observe in the fish classification experiments, Fig 11-Fig 13 that for larger values of
C, the speed of MMO begins to become comparable to the normal SMO. We can explain this from a geometric
perspective by observing that momentum minimization tries to provide the largest step of improvement to the objective
function by ensuring that updates are not wasted trying to move variables between boundary values. However, when the
optimal solution has many variables not at bound, momentum minimization does not influence the choice of working
sets much. This is because most of the variables move inside the feasible region and do not hit the constraint
boundaries, which results in an average momentum close to zero. We can see this in Fig 12 where a linear kernel does
not separate our fish dataset well. It is also possible that a better approximation of optimal working set choice could be
made and this problem may not be so apparent. Another way around it is to stop the iteration once the variables at
bound have been determined and possibly apply a heuristic to check the variables not at bounds. The details of this are
presently being worked on.

Platt inadvertently proposed a decomposition algorithm with a Newton iterate rule and solved the problem of applying a
Newton rule to large datasets without the memory constraint problem. SMO actually ends up solving the minimization
of the gradients of the Lagrange Dual which is related to the problem solved by Joachim[11]. However, we postulate
that the rates of convergence of SMO are no longer quadratic due to the decomposition aspect of the problem. The
enforcement of the equality constraint in the threshold is not necessary for formulations that do not explicitly minimize
the threshold b e.g.[22]. We have shown that the update rule of SMO is Newtonian and the algorithm which was
pointed out to be related to Bergman methods[4] is also simply just a bounded form of Newtonian iteration with a set
of heuristics derived empirically. We have gone further and derived the theoretical relationship that relates the solution
of the sub problem to the main problem. The results show that a proper choice of sub problems selected through
momentum minimization has been shown to increase the rates of convergence. However, in some cases this may not be
desirable if the sub problem that gives the optimal step is expensive to compute. We note that the rough heuristic set
used here is just an approximation of the optimal momentum minimization. We could obtain a better approximation to
the optimal minimal momentum by considering search methods and better prediction techniques. Our initial results so
far seem to suggest that the momentum minimization idea could greatly improve the convergence when the solution for
an optimization problem exists in a constrained region.

 21

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

Remark 1:
It can be seen from results above that the norm-reduction property of the decomposition method is dependant on the
value of the step . We can see that is a function of deterministic variables and also the value of

. For every iterative step to be norm reducing, we require
1 2,y yM∆

1 2,y yM∆ 1 2,y y
R∆ 0t∀ > ;

1 2, 0y yM∆ < (58)

We can see that in all cases computed, M∆ has two common terms namely
2

2 1(E E
η
−)

 and () ()()
2 2

1 22
R x xφ φ∆

± . We

note that the right hand most term is always positive regardless and minimizing this positive term requires an exhaustive
search, which is computationally expensive. Platt’s first heuristic actually minimizes (largest negative) the first term

since we have assumed 0η < and the term is negative. It is clear now that minimizing the term
2

2 1()E E
η
−

 corresponds

directly to choosing the maximal violating pair 2 1E E− for an arbitrary 2α .

If we choose the maximal violator pair for update, we have the following for all violators;

 () ()() 0i i i i i i iy f x y f x y y E→ − → <

i <

which implies when and vice-versa. We then see that if 0 then 0iy E> 2 0E < the largest difference 2 1E E−

2y

would most likely be found by looking for the largest and vice versa. We then note that here, become
the more likely choice of candidates for the algorithm to update using the main heuristic. If this is the case, then one
immediate improvement to the heuristic set is to further investigate a better estimate for minimizing the momentum in
the selection of variables where .

1 0E > 1y ≠

1 2y y≠

Remark 2:
From observation 1, we choose maximal violators to minimize the negative terms but we have yet to show that the step
size function, is always negative or towards the minimum of the objective function. In fact, we have the
following necessary conditions from (43) and (45);

1 2,y yM∆

a) If y y , if and only if for some1 2=
1 2, 0y yM∆ < 1 2,α α ;

 () ()()
2 2 22 1

1 2
()

2 2
E E R x xφ φ

η
− ∆

< −

b) If y y , if and only if for some1 2≠
1 2, 0y yM∆ < 1 2,α α ;

() ()() () ()
2 2 22 1 2 1

1 2 2 1 22 11
() ()

2 2
E E R E ER x x R E E K Kφ φ

η η
− ∆∆

< − − ∆ + − −
−

However, if we choose 1 2,α α such that then we are assured that *R R∆ = ∆

1 2, 0y yM∆ < holds always due to observation
1. Case 1 and Case 2 are obvious because the optimal step size is the potential step (40) which is always negative since

0η < . We show this for Case 3 and Case 4 where we have;

 22

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

()
() ()() ()

() ()()
()
() ()() () ()() () ()()

() ()()
()
() ()() () ()() () ()()

2 1

1 2

2 1

2 1

2 2 22
2 1* 2 1

, 2
22 111 2

2 2 22
2 12 1

2 2
2 1 2 12 1 1 2

2 2 22
2 12 1

2 2
2 1 2 12 1 1 2

()()

2

()()

2

2()2()1
2

y y

E EE EE E
M

K Kx x

E EE EE E
x x x xx x x x

E EE EE E
x x x xx x x x

η φ φ

φ φ φ φφ φ φ φ

φ φ φ φφ φ φ φ

−+−
∆ = − −

−+

−+−
= − − −

− +− +

 −+−= − + +
 − +− + 

() ()()
()
() ()() () ()()

2
2

2 12 1 2 1
2

2 1 1 2 2 1

() ()1 =
2

 0

E EE E E E
x x x x x xφ φ φ φ φ φ




  +− −  − + +  − + −   
≤

 (59)

Thus, we have shown that minimizing momentum not only increases the rate of convergence of the decomposition
method, but also ensures that the actual step size is towards the minimum of the objective function for an arbitrary
working set.

Remark 3:
We note that (39) is a convex quadratic function in terms of momentum R∆ . This leads us to believe that we could
attach some notion of direction to the iteration process as with actual momentum in physics. At this stage, it still
remains a subject of further investigation for us.

VII. CONCLUSION
We have presented an iteration measure that gives some indication for the choice of optimal variables to be included in
a working set for the decomposition technique. We have demonstrated that minimizing our proposed iteration
momentum improves the rates of convergence greatly for the decomposition method. Future work will concentrate on
improving the prediction techniques to obtain near optimal momentum minimization. We are currently investigating the
effect of momentum minimization for more complex boundary geometries and also the effect of applying extrapolation
while minimizing momentum.

VIII. APPENDIX

A. SMO update is a Newton method
We expand the update rule (22);

() ()2 1 2 1 2 21 1 2

2 2 2 2
11 22 12 11 22 12

(1()
(2) (2)

t t t y f x y y y f xE E
y

K K K K K K
α α α+)− − +−

= + = +
+ − + − (A1)

Now, we simplify (26),

()

()()
()()

()

2

11 2 22 2 12 2 12 2 2 2 2 1

11 1 2 2 22 2 12 2 12 1 2 2 2 2 1 1 12 2 2 22

2 1 1 1 11 1 2 21

1 11 22 2 12 2 1 12 2 2 1 12 2 22

() () 1

() ()

 1

sK s K K sK s y v y v s

sK s s K K sK s s y f x b y K y K

y f x b y K y K s

s K K K s K y f x s K K

α
γ α α α γ α

α α α α α α α α α α

α α

α α α α α α

∇ℑ

= − − + − − − + − +

= + − − + − + − − + − −

+ + − − − +

= − + − − + + + ()
() ()
() ()

2 1 1 11 2 21

2 1 2 2

2 1 1 2 2 2

1

1

1

y f x s K K s

y f x y f x s

y f x y y y f x

α α− + − +

= − − +

= − − +

Then using (27) we get the required relationship;

 23

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

() ()

()

2 1 2 1 2 21
2 2

11 22 12

2
2

2

(1
(2)

()

()

t t

t

y f x y y y f x
K K K

α α

α
α

α

+)− − +
= +

+ −
∇ℑ

→ −
∇ ∇ℑ

 (A2)

Since 2α is arbitrary, we get the following relationship for 1α ;

 (A3)

()
()

()

2 2 1 2

1 1 2 2 1

1 2 1

1

()

 = -
 ()

y E E

y y y E E

sy E E
s

α

α

∇ℑ = −

= − −

−

= − ∇ℑ

We note that (27) implies () (2() ())1α α∇ ∇ℑ = ∇ ∇ℑ since 2α is arbitrary. Then, we have from (25) the following
result;

()

()

() ()

1 1,
1 1 2 2

2
1 2 2

2

2
1

2

2 11 1
1 1

1 1

()
()

 ()
()

()

()
() ()

() ()

t t t t clipped

t t t

t

t t

s

s

s

s

α α α α
α

α α α
α

α
α

α
α α

α α
α α

+ +

+

= + −
∇ℑ

= + − +
∇ ∇ℑ

∇ℑ
= +

∇ ∇ℑ

∇ℑ ∇ℑ
= − = − → ∈

∇ ∇ℑ ∇ ∇ℑ 1
tα

m

 (A4)

B. Gateux-differentiable functions
Definition VIII.1 (Ortega[5])

A mapping : nF D R R⊂ →

)m

is G-differentiable at an interior point of D if there is some linear operator,
(,nA L R R∈ so that for any , nh R∈

 ()()
0

1lim 0
t

F x th Fx tAh
t→

+ − − = •

 24

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

REFERENCES

[1] V. N. VAPNIK, THE NATURE OF STATISTICAL LEARNING THEORY, 2ND ED. NEW YORK: SPRINGER, 2000.

[2] B. SCHÖLKOPF AND A. J. SMOLA, LEARNING WITH KERNELS : SUPPORT VECTOR MACHINES, REGULARIZATION,
OPTIMIZATION, AND BEYOND. CAMBRIDGE, MASS.: MIT PRESS, 2002.

[3] A. J. SMOLA AND B. SCHÖLKOPF, "A TUTORIAL ON SUPPORT VECTOR REGRESSION," NEUROCOLT2 TECHNICAL
REPORT NC2-TR-1998-030, 1998.

[4] J. PLATT, "FAST TRAINING OF SUPPORT VECTOR MACHINES USING SEQUENTIAL MINIMAL OPTIMIZATION," IN
ADVANCES IN KERNEL METHODS-SUPPORT VECTOR LEARNING, B. SCHÖLKOPF, C. J. C. BURGES, AND A. J.
SMOLA, EDS.: CAMBRIDGE MIT PRESS, 1998, PP. 185-208.

[5] J. M. ORTEGA AND W. C. RHEINBOLDT, ITERATIVE SOLUTION OF NONLINEAR EQUATIONS IN SEVERAL VARIABLES.
NEW YORK,: ACADEMIC PRESS, 1970.

[6] B. SCHÖLKOPF, C. J. C. BURGES, AND A. J. SMOLA, ADVANCES IN KERNEL METHODS : SUPPORT VECTOR
LEARNING. CAMBRIDGE, MASS.: MIT PRESS, 1999.

[7] P. E. GILL, W. MURRAY, AND M. H. WRIGHT, PRACTICAL OPTIMIZATION. LONDON ; NEW YORK: ACADEMIC
PRESS, 1981.

[8] C.-W. H. A. C.-J. LIN, "A SIMPLE DECOMPOSITION METHOD FOR SUPPORT VECTOR MACHINES.," DEPARTMENT
OF COMPUTER SCIENCE AND INFORMATION ENGINEERING, 1999.

[9] E. F. OSUNA, R.; GIROSIT, F., "TRAINING SUPPORT VECTOR MACHINES: AN APPLICATION TO FACE DETECTION,"
PRESENTED AT COMPUTER VISION AND PATTERN RECOGNITION, 1997. PROCEEDINGS., 1997 IEEE COMPUTER
SOCIETY CONFERENCE ON, 1997.

[10] S. K. S. S.S. KEERTHI, C. BHATTACHARYYA AND K.R.K. MURTHY, "IMPROVEMENTS TO PLATT'S SMO
ALGORITHM FOR SVM CLASSIFIER DESIGN,," CONTROL DIVISION, DEPT. OF MECHANICAL
ENGINEERING,NATIONAL UNIVERSITY OF SINGAPORE CD-99-14, 1999.

[11] T. JOACHIMS, "MAKING LARGE SCALE SUPPORT VECTOR MACHINE LEARNING PRACTICAL," IN ADVANCES IN
KERNEL METHODS - SUPPORT VECTOR LEARNING, B. SCHÖLKOPF, C. J. C. BURGES, AND A. J. SMOLA, EDS.:
CAMBRIDGE , MIT PRESS, 1998, PP. 169-184.

[12] C.-J. LIN, "LIBSVM," HTTP://WWW.CSIE.NTU.EDU.TW/~CJLIN/.

[13] R. FLETCHER, PRACTICAL METHODS OF OPTIMIZATION. CHICHESTER [ENG.] ; NEW YORK: J. WILEY, 1981.

[14] N. CRISTIANINI AND J. SHAWE-TAYLOR, AN INTRODUCTION TO SUPPORT VECTOR MACHINES : AND OTHER
KERNEL-BASED LEARNING METHODS. NEW YORK: CAMBRIDGE UNIVERSITY PRESS, 2000.

[15] C.-J. LIN, "ON THE CONVERGENCE OF THE DECOMPOSITION METHOD FOR SUPPORT VECTOR MACHINES," NEURAL
NETWORKS, IEEE TRANSACTIONS ON, VOL. 12, PP. 1288-1298, 2001.

[16] E. G. G. S.S. KEERTHI, "CONVERGENCE OF A GENERALIZED SMO ALGORITHM FOR SVM CLASSIFIER DESIGN,"
CONTROL DIVISION, DEPT. OF MECHANICAL ENGINEERING,NATIONAL UNIVERSITY OF SINGAPORE 2001.

[17] C.-J. LIN, "LINEAR CONVERGENCE FOR A DECOMPOSITION METHOD FOR SUPPORT VECTOR MACHINES,"
NOVEMBER 2001.

[18] C.-C. CHANG, C.-W. HSU, AND C.-J. LIN, "THE ANALYSIS OF DECOMPOSITION METHODS FOR SUPPORT VECTOR
MACHINES," NEURAL NETWORKS, IEEE TRANSACTIONS ON, VOL. 11, PP. 1003-1008, 2000.

[19] D. LAI AND N. MANI, "MATRIX FORMULATION FOR THE SUPPORT VECTOR CLASSIFIER," MONASH UNIVERSITY
MECE-7-2003, 2003.

 25

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

http://www.csie.ntu.edu.tw/~cjlin/

[20] L. R. FOULDS, OPTIMIZATION TECHNIQUES : AN INTRODUCTION. NEW YORK: SPRINGER-VERLAG, 1981.

[21] C. L. M. BLAKE, C.J., "UCI REPOSITORY OF MACHINE LEARNING DATABASES IRVINE, CA," UNIVERSITY OF
CALIFORNIA, DEPARTMENT OF INFORMATION AND COMPUTER SCIENCE, 1998.

[22] D. LAI, M. PALANISWAMI, AND N. MANI, "FAST LINEAR STATIONARY METHODS FOR AUTOMATICALLY BIASED
SUPPORT VECTOR MACHINES," PRESENTED AT NEURAL NETWORKS, 2003. PROCEEDINGS OF THE
INTERNATIONAL JOINT CONFERENCE ON, 2003.

 26

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami

	Introduction
	The Newtonian Decomposition method for Support Vector Machines
	Overview of the general Newton Method
	SMO: A Newtonian Decomposition Method

	Iteration Momentum and The Potential Step Size
	The Idea of Momentum
	Iteration Momentum in a bounded region

	Momentum Minimization
	Theoretical Momentum Minimization
	Approximate Momentum Minimization through heuristic implementation
	Working set of examples from the same class
	Working set of examples from the opposite class

	Experimental results
	Discussion
	
	
	If �,� if and only if for some�;
	�
	If �,� if and only if for some�;
	�

	Conclusion
	Appendix
	SMO update is a Newton method
	Gateux-differentiable functions

