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Abstract: In this report, we propose a iteration measure to determine a better working set choice for the decomposition 
method. The decomposition method generally solves a sequence of sub problems instead of the entire problem at each 
iterative step. This makes it an ideal optimization method for solving the Support Vector Machine classifier, which is usually 
trained on a large dataset using machines with limited processing memory. The rate of convergence of the decomposition 
algorithm depends largely on the order of the sub problems solved and has been shown to be linear in the worst case. Our 
iteration measure determines the amount of overstep if the update on an iterate causes it to exit the feasible region. We then 
choose a working set that minimizes this amount of overstep, there by also increasing the step towards the minimum of the 
objective function. We report some initial results, which show a good improvement to the rates of convergence for our 
benchmark datasets.    

I. INTRODUCTION 
The Support Vector Machines (SVM) developed by Vapnik[1] and co-workers has been shown to be a powerful 
supervised learning tool. The standard soft-margin Support Vector Machine is a binary classifier applied to classify a 
data set defined as, 
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The SVM formulation is essentially a regularized minimization problem leading to the use of Lagrange Theory and 
quadratic programming techniques. The formulation defines a boundary separating two classes in the form of a linear 
hyperplane in data space where the distance between the boundaries of the two classes and the hyperplane is known as 
the margin of the hyperplane. This idea is further extended for data that is not linearly separable; where it is first 
mapped via a nonlinear function to a higher dimension feature space. Maximizing the margin of the hyperplane in either 
space is equivalent to maximizing the distance between the class boundaries. Vapnik[1] suggests that the form of the 
hyperplane, f x  be chosen from family of functions with sufficient capacity. In particular, F contains functions for 
the linearly and non-linearly separable hyperplanes;  
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The weight vector, w in (3) is no longer the same expansion as in the linearly separable case (2). In fact, the non-linear 
mapping  and  defines the mapping from data space to feature space. Hence the weights 

in feature space will have a one to one correspondence with the elements of

:φ ⊂ ℜ →ℜnx [ ), 1,∈ ∞n m

( )φ x . Now for separation in feature space, 
we would like to obtain the hyperplane with the following properties; 
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The conditions in (4) can be described by a strict linear discriminant function, so that for each element pair in Θ , we 
require that; 
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The distance from the hyperplane to a support vector is 1
w

and the distance between the support vectors of one class to 

the other class is simply 2
w

 by geometry. The soft-margin minimization problem relaxes the strict discriminant in (5) 

by introducing slack variables, iξ  and is formulated as; 
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We now apply Lagrange Theory to solve (6) giving us the Lagrange Primal problem of the following form;  
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The following dual optimization of a cost function written in terms of Lagrange Multipliers alone is usually 
implemented by incorporating the gradient condition into the cost function of P.2 and minimizing the following 
Lagrange dual in terms of Lagrange multipliers, α alone; 
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The separating hyperplane surface in (4) can now be written in terms of Lagrange Multipliers; 
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Recent work has shown that variations of the original formulation could be solved using linear programming[2, 3], but 
we shall focus on the quadratic program here. Several optimization algorithms are documented in [2] and they are often 
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modified versions of classical optimization methods which have been tailored to solve the Support Vector Machine 
problem. A standard fast iterative method is the Newton method that could be applied to solve the constrained 
optimization problem. Unfortunately, Newton-methods are not practical for large datasets since they require the 
computation of an inverse derivative, which needs to be stored in memory. Even with today’s current memory 
standards, 512MB of RAM is only capable of storing 128 million floating-point numbers, which translates to 
approximately a 10000 x 10000 matrix. 
 
The decomposition method is one possible solution for situations where processing memory is limited.  Instead of 
solving the entire problem at each iteration (i.e. updating all n variables for an n-dimensioned problem), the method 
decomposes the problem into smaller sub problems and solves them sequentially. The advantage of this is that, we 
require only a fraction of the data to solve the sub problems at each iterative step making it possible to store the rest of 
the data on disk and to bring it into memory only when required. One such decomposition algorithm is the Sequential 
Minimal Optimization (SMO) introduced by Platt[4] which is one of the more efficient training and easy to implement 
algorithms around. SMO is a Newtonian decomposition type algorithm that solves sub-problems of two variables at any 
one time.  However, it has been pointed out that such decomposition algorithms have somewhat slower rates of 
convergence compared to the quadratic convergence rates enjoyed by Newton methods[5-7]. Hsu [8], points out that 
this is due to the choice of sub-problems to solve which up to now has been rather arbitrary. If solving a sequence of 
sub problems makes poor improvement to the objective function, the rates of convergence naturally slow down. It is 
clear that the choice of sub problems to solve is central to the success of the decomposition method. Unfortunately, 
determining the optimal sub-problems is rather tricky since the algorithm only considers a subset of variables at any one 
time [8] and so far, the methods for solving SVMs do not apply any measure of iteration progress to evaluate the 
effectiveness of solving a particular sub problem. We believe however that some effort should be spent in finding a 
measure to determine the best sub problem to solve; one which when solved gives the greatest improvement to the 
objective function at each step. This can be done for a fixed sub problem size, by considering all the possible 
combinations of variables which is obviously going to be very computationally inefficient. Much of the current choices 
have been trial and error to find the better combination of variables to solve. We refer the reader to some empirical 
results and algorithm implementations of SVM decomposition type algorithms [4, 9-11]. 
 
 In this report, we address the problem of choosing optimal sub problems to solve so that the rate of convergence of the 
decomposition method is increased. We first introduce our idea of iteration momentum which takes into account the 
distance which the iterates cross the constraint boundaries when the update rule takes them outside the feasible region. 
We then investigate the effect of minimizing momentum and show empirically that we can achieve faster convergence 
rates by doing so. We apply our idea to a Newtonian decomposition method which uses an SMO update rule. We note 
here that several modern implementations of SMO and SVMlight such as [10] and LibSVM[12] are currently much 
faster than the original pseudocodes. However, the newer implementations run a basic combination of the original 
update rules using more efficient coding. Our work here focuses on a method to choose optimal working set pairs that 
give the best decrease towards the minimum of the cost function. We could further apply the results here to the modern 
implementations to increase their convergences rates further.  
 
The outline of this paper is as follows; in the next section, we review the Sequential Minimal Optimization algorithm 
and reformulate it in the familiar Newton update on a closed feasible region. In Section 3, we introduce the notion of 
momentum in the decomposition setting and investigate momentum minimization in the context of the Newton form. 
We show here that determining the actual momentum at each iterative step is computationally expensive, but we could 
predict choices of variables which would have near optimal momentum values. In our initial analysis here, we propose a 
heuristic set to approximate the momentum minimization idea. The remaining sections will be left for some initial 
results and further discussion. 

II. THE NEWTONIAN DECOMPOSITION METHOD FOR SUPPORT VECTOR MACHINES 

A. Overview of the general Newton Method 
 
We first review the Newton method briefly by defining the general minimization problem of a cost function subject to a 
set of constraints; 
 

Definition II.1: General Minimization Problem with Constraints 
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Geometrically, the set  is a polytope formed by the constraint set on the minimization problem and usually referred to 
as the feasible region since the solution vector, *α  must lie in this region. The minimization problem can easily be 
converted to a maximization problem by optimizing the negative of the cost function. •  
 
The parallel chord method[5] for a multivariable function is the following update rule; 
 

                     ( )1 1t t M tα α+ −= − ℑ α            (11) 
 
The simplest matrix M is a diagonal matrix with elements, which actually solves n-functions in 1 dimension. 
Newton’s method uses the derivative of the function 

iim
ℑ as M in order to increase the step towards the minimum. We 

now have the well-known Newton method[13, 14] update written as, 
 
                          ( ) ( )11t t t tα α α

−+ = −∇ℑ ℑ α                                                                         (12) 
We note however that the Newtonian method requires the calculation of the inverse derivative of the cost function, 
which requires a substantial amount of memory to store for large datasets. This has led to the use of decomposition 
methods, which break the main problem down into a series of smaller problems that can be loaded into memory as 
required. We give a more formal definition of the decomposition method and then review a Newtonian Decomposition 
algorithm.  

Definition II.2: The Generalized Decomposition Method 

Given the following problem;  
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The decomposition method solves the problem by decomposing the objective function ( )ℑ U into m-sub-problems 

 and solving each sub-problem independently. We refer to the subspaces  
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Definition II.2: The Newtonian Decomposition Method 
Let the sequence of working sets; { be presented to the decomposition algorithm. Then the Newtonian 
Decomposition method applies the Newtonian update rule to each element of the sub domain  so that ; 
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when solving the sequence of m-sub-problems ( ) ( ) ( )1 1 2 2, ... m mℑ ℑ ℑu u u •  
 
The one main concern with the decomposition method is that solving sub problems might cause oscillations between 
locally optimal solutions thus making the convergence of a general decomposition method not easy to prove. 
Nevertheless, in the case of Support Vector Machines, several researchers have attempted to prove convergence for 
specific decomposition algorithms under several assumptions[15-18]. Perhaps this is easier to do since from (8), the 
feasible region for solutions,  is in a convex polyhedral defined by;  
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In actual fact, we have shown that the optimal solution vector lies on a hyperplane bounded by a hypercube [19]. The 
convexity of the feasible region then guarantees a global unique solution and possibly reduces the chances of 
oscillations between local minima (NB: There is no local minima, but computational precision could cause “local” 
minima around the optimal solution and cause unnecessary iterations even though the optimal solution has already been 
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obtained). We believe that as long as the step is towards the minimum of the cost function, the SVM decomposition 
algorithms should converge.  
 

B. SMO: A Newtonian Decomposition Method 
 
We review the update rule used in SMO[4] which we show to be a hybrid element-wise Newton method in a 
decomposition algorithm setting. For the sake of simplicity, we will adopt the notations used by Platt in the original 
implementation for this summary. The working set size in SMO is fixed to two in order to enforce the equality 
constraint in (8) at every step of the iteration. We denote the working set as; 
 
                                           { }1 2 1 2,    ,Wα α α α α= ∈ℜ           ( 14) 
 
 Whenever we update the value of two multipliers, SMO maintains the equality constraint by ensuring; 
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We make use of (15) to express the following for some iterative step, t where t ; 0>
 

                                                    1 2
1 1

1 2 1 2
t t t t

s y y

s sα α α α+ +

=

+ = + = γ

l

      (16)                       

                      
Platt defines the error of a training point as  where, iE
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The minimum of the cost function (8) subject to the equality constraint is first found in the direction of an arbitrary 

2α while the other multiplier 1α is set to a value that maintains the equality constraint. We can derive the update rule for 
SMO by writing the cost function  in terms of the working set members; 
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Then, the objective function expressed in 2α entirely is,  
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The minimum of (19) can be found with respect to 2α , by taking the derivative with respect to the multiplier; 
 

( )2 11 2 22 2 12 2 12 2 2 2 2 1( ) ( ) 1sK s K K sK s y v y v sα γ α α α γ α∇ℑ = − − + − − − + − + = 0     (20) 
 
Expanding and substituting for  and s γ , we get 
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Finally, after some rearranging we obtain the update rule, 
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In order to ensure that 1α ∈ , we enforce the following; 
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The update for 1α  is then found by using (16); 
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It can be seen here that the equality constraint is enforced at each step of the iteration through the use of (25).  From 
(22), the Newton form is not immediately obvious, so we write the derivatives of the objective function (8) as; 
                   

 ( )2 2 1 2( ) y E Eα∇ℑ = −                                                     (26) 
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Then the update rule (22) can be written as; 
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Similarly, we find that the update rule for α1 is also Newton; 
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We note from (10) that 1 2,α α ∈  implies that the multipliers are bounded at each iterative stage to ensure that they 
remain in the feasible region.  Therefore, depending on the choice of , the updates are optimal in the direction of the 

two multipliers on the feasible region. We recover (12) by setting ( ) ( )t tF α α= ∇ℑ and obtain the element-wise 
Newton method.  We can easily see now from Definition II.1 that the SMO update rule actually solves the minimization 
of the derivative of the cost function (8) which is similar to Joachim[11]. The details of the derivation above are 
included in the appendix. 

III. ITERATION MOMENTUM AND THE POTENTIAL STEP SIZE  

A. The Idea of Momentum 
It can be seen that (22) and (29) leave the choice of the next working set variables arbitrary as before, that is we can 
pick any two variables to solve. The problem with this is that we are only assured the updates of the two variables are 
optimal in the Newtonian sense, but we do not know how optimal they were on the entire variable space. In the 
Newtonian case, the step is always an improvement as long as we start somewhere in the vicinity of the optimal 
solution. We would like some sense of measure to guide us during the iteration process so that at least our arbitrary 
choice of working set is “optimal” in some way. In this way, we could thus increase the rates of convergence of the 
decomposition method and reduce the training times for the Support Vector Machine. 
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We now introduce the quantity, ∆  to model the effect of (23) when restricting the update in (22) to the feasible region 
. We loosely refer to quantity ∆  as the “momentum” of the iterative step but it is a direct measure of the amount of 

restriction imposed if the updates on the variables cause them to exit the region . In doing so, we now have a measure 
of how “hard” an arbitrary iterative step causes the iterates to hit a constraint boundary. We first derive the necessary 
equations and then attempt to give a geometrical interpretation of our momentum quantity.  

R
R

 
Let us first rewrite the update rules for two arbitrary Lagrange Multipliers 1α  and 2α by taking into consideration our 
proposed iteration momentum. 
 
For an arbitrary 2α we have; 
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We have the following updates on the working set variables written in element-wise vector notation;   
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We now investigate the effect of momentum by computing the change at each iterative step on the value of the 
objective function. Let us make the following substitutions to simplify the exposition.  
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To simplify the exposition, we leave out the superscript t and all iterates are assumed to be for the iteration step t. We 
now proceed to simplify ( 35), 
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A y v y y K y y K B y v y y K y y K

Ay x By x

α α α

α α

α α α α

α α α α α α

φ φ

− + +

 − − − − + + + 

− − −

→ ℑ − + + − − + + −

+ +

( ) ( )( ) ( )( )

1

→ℑ

( ) ( )

( ) ( ) ( )

2

2

1 2 1 1 1 2 2 2 1 1 2 2

2

1 2 1 1 2 2 1 1 2 2

1,
2

1,
2

Ay f x y By f x y Ay x By x

Ay E By E Ay x By x

α α φ φ

α α φ φ

  

 → ℑ − − − − + + 

 → ℑ − − + + 

 

 

          ( ) ( ) ( ) ( ) 21
1 2 1 2 1 1 2 2 1 1 2 2

1, ,
2

t t Ay E By E Ay x By xα α α α φ φ+  = ℑ − − + +∴ℑ      ( 36) 

 
The step size or step length denotes the improvement to the cost function with respect to the updates at each iterative 
step. We now have step size for this Newtonian Decomposition rule by writing ( 36) in the following form;  
 

        ( 37) ( ) ( )
1 2

1
1 2 1 2 ,, ,t t

y yMα α α α+
ℑ = ℑ + ∆

 
Here, ∆ is the step size, which we write as,  

1 2,y yM
 

                   ( ) ( )
1 2

2

, 1 1 2 2 1 1 2 2
1
2y yM Ay E By E Ay x By xφ φ∆ = − − + +       ( 38) 

 
We note here that is derived for the minimization of the cost function 

1 2,y yM∆ ℑ  and can be similarly derived for the 
maximization of the cost function . Instead of defining norms on the domain space, we can now investigate the 
improvement at each iteration step in greater detail based on the step size .  

ℑ

1 ,y yM∆
2

 
We proceed with our analysis by further substituting for A and B in ( 38) and to make it easier to follow, we make the 
substitution; 
 

                                          1 2 1 2 1 2( ) ( )
 ,      D

y E E y E E
C

η η
− −

= =   

 
So that; 
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )

1 2,

21 2 1 2 1 2
1 1 2 2 1 1 2 2

2 1 1 1 2 2
2 2 1 1

2 2 2 2
1 2 1 2 1 2

2
2 1

2 2 1 1

( ) ( ) 1 
2

( ) ( )

1   2
2

( ) 1
2

y yM

y E E y E E
R y E R y E C R y x D R y x

E E E E E E R y E y E

C R x D R x C R D R y y x x

E E
R y E y E C

φ φ
η η

η η

φ φ φ φ

η

∆

   − −
 → − −∆ − + ∆ + −∆ + + ∆     

   
 − −

→ − + −∆ − 
 

 + − ∆ + + ∆ + − ∆ + ∆ 

−
→ −∆ − + ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( )( )

( ) ( )

2 2
11 22 1 2 12

2

11 22 1 2 12 1 2 12 11 22 1 2 12

2 2 2 22 1 2 1
2 2 1 1 1 1 2 2

2 1
1 11 2 12 2 22 1 12

2 2
2 1

2 2 1 1 1 1 2

2

    2
2

( ) ( )
2 2

( )
    

( )
2 2

K D K CDy y K

R K K y y K R C y y K K D K y y K

E E E E RR y E y E y x y x

E E
R y K y K y K y K

E E RR y E y E y x y x

φ φ
η η

η

φ φ
η

+ +

∆
+ + − + ∆ − + −

− − ∆
→ −∆ − − + −

−
− ∆ + − +

− ∆
→ −∆ − + − ( )( ) ( )( )2 2 1

2 2 22 1 11 2
( )R E E

y K y K y y K
η

∆ −
− + − 1 12+

 
 
We now have; 
 

( ) ( ) ( )( )

( )( )

1 2

2 2 22 1
, 2 2 1 1 1 1

2 1
1 11 2 22 2 1 12

( )
2 2

( )
                    

y y
E E RM R y E y E y x

R E E
y K y K y y K

φ φ
η

η

− ∆
∆ = − ∆ − + −

∆ −
− + − +

2 2y x
     ( 39) 

 
We now have the step size function in terms of momentum, 

1 2,y yM∆ R∆  which models how hard the iterates would hit 
the constraint boundaries when they are updated using a Newton step. The larger the value of , the larger the 
momentum of the iteration or the harder the iterates hit the constraint facet. We note that this general form applies only 
to an arbitrary working set 

R∆

wα  of size 2. It is also clear that ∆ depends on the labels , hence the choice of 
our notation for the step size function.  

1 ,y yM
2 1 2,y y

 
If we set , we immediately disregard the existence of boundaries i.e. the region is open and unbounded, we 
have; 

0R∆ =

                       

          
2

2 1(
2p

E E
M

η
−

∆ =
)

                                            (40) 

 
We refer to the function pM∆ as the potential step size or simply the potential function that actually depicts the true 

Newtonian step that would be taken if the solution vector lies in the entire lℜ space. In other words, it is the potential 
improvement of the objective function if they were no constraints on the variable vector α .  
 
Observation 1: Largest Potential Step  
 
We note that for a positive (semi-positive) definite kernel matrix, ( )0 0η η< ≤

wα
 the potential step is always towards the 

minimum of the objective function (8) for any arbitrary working set .  In the case of a constrained region, the largest 
actual step is approximated in [4] by using the maximal violating pair 2 1E−E  for an arbitrary . This has 
empirically been shown to work well by Platt in the case of the constrained SVM dual in (8). However, in the case of 
decomposition for a general optimization problem, we do not know yet whether the largest potential step would actually 
guarantee the best improvement to the objective function in a constrained region. The necessary and sufficient 
conditions to guarantee this still remains an interesting research topic for us to study further•   

wα
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In this work, we characterize the step size function ( 39), according to the labels which correspond directly to 
choice of 

1 2,y y

1 2,α α  in the working set, wα . We first list several relationships that would be useful for the following 
derivations. 
 

  ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2

12 11 22 1 2 1 2 1 22  = ,K K K x x x x x xη φ φ φ φ φ= − − − − − = − −φ     ( 41) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )22 11 2 1 2 1 2 1 2 1- ,K K x x x x x x xφ φ φ φ φ φ φ φ= − + = − + x    ( 42) 

 
Case 1: If , we then have from ( 39), 1 2 1y y= =
 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( )

2 2 22 1 2 1
1,1 2 1 1 2 22 11 12

2 2 22 1 2 1
2 1 1 2

2 2 22 1
1 2

( ) ( )
2

2 2
( ) ( )

       
2 2

( )
        =

2 2

E E R E ERM R E E x x K K K

E E R E ERR E E x x

E E R x x

φ φ
η η

φ φ η
η η

φ φ
η

− ∆ −∆
∆ = − ∆ − + − − + −

− ∆ −∆
= −∆ − + − − −

− ∆
+ −

    ( 43) 

 
Case 2: If , we then have from ( 39), 1 2 1y y= = −
 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( )

2 2 22 1 2 1
1, 1 2 1 1 2 11 22 12

2 2 22 1 2 1
2 1 1 2

2 2 22 1
1 2

( ) ( )
2

2 2
( ) ( )

            =
2 2

( )
            =

2 2

E E R E ERM R E E x x K K K

E E R E ERR E E x x

E E R x x

φ φ
η η

φ φ η
η η

φ φ
η

− −

− ∆ −∆
∆ = − ∆ − + + − − − − − +

− ∆ −∆
+ ∆ − + + −

− ∆
+ +

  ( 44) 

 
 
Case 3: If , we then have, 1 2 1 2, 1,y y y y≠ = − =1
 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

2 2 22 1 2 1
1,1 2 1 1 2 11 22

2 2 22 1 2 1
2 1 22 11 1 2

( ) ( )
2 2

( ) ( )
          =

2 2

E E R E ERM R E E x x K K

E E R E E RR E E K K x x

φ φ
η η

φ φ
η η

−

− ∆∆
∆ = − ∆ + + − − − −

− ∆ − ∆
− ∆ + − − + +

−

1−

   ( 45) 

 
 
Case 4: If , we then have the symmetry, 1 2 1 2, 1,y y y y≠ = =
 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

2 2 22 1 2 1
1, 1 2 1 1 2 11 22

2 2 22 1 2 1
2 1 22 11 1 2

( ) ( )
2 2

( ) ( )
         

2 2

E E R E ERM R E E x x K K

E E R E E RR E E K K x x

φ φ
η η

φ φ
η η

−

− ∆∆
∆ = − ∆ − − + + − −

− ∆ − ∆
= + ∆ + + − + +

−

2

   ( 46) 

 
If we generalize the cases further, we can see that 1y y=  and 1y y2≠  give different step sizes and have different 
momentum values. This seems to prove the existence of an “optimal” choice of working set to solve in order to give the 
best improvement to the objective function. It also seems to suggest that we could predict which cases would most 
likely give a better step during the iteration process. For now, we give a geometrical discussion of our momentum idea 
in the following section. 
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B. Iteration Momentum in a bounded region 
 
Consider the problem of minimizing an objective function subject to a set of constraints on the problem variables as 
given in Definition II.1. We can interpret the set of constraints as boundary planes[20] which form a region lying in 
the general space. So, if the problem has n-constraints, the region then has n sides or facets. The solution to the 
problem which is a vector of variables 

lℜ

{ 1 2, ... l}α α α=α is constrained to lie in this “feasible” region .   In the case of 
our Support Vector dual problem (8), each training example contributes a constraint and so we can think of the region 

as a hyperplane lying in a hypercube for the case where . Now, let us consider a simpler problem where the 
region has the following shape as in Fig 1. For illustration purposes, the solution vector 

3l >
*α to this minimization 

problem is located towards the “bottom” of the feasible region. Suppose we start the algorithm off with an initial guess, 
I0 then in the ideal case, we would like the optimization algorithm to follow the path of the thick line (indicated by I1) so 
that we would have obtained the solution to the problem in the quickest way. Unfortunately the location of *α  is 
unknown to the optimization algorithm and a good rule of thumb so far is to follow the strictest path of descent that we 
have shown as a series of dashed lines.  
 

I0 

I1

Start 

α*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: An example of a feasible region Q on the α space for a minimization problem where the solution vector *α  is denoted by a circle.  

 
 

Start 
I0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2: An example of the regions where the potential vector α could lie
figure depicts the case for 5 iterative steps.  
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α*
 when only a subset of it is updated through the decomposition method. The 

11



In the case of the decomposition method in Fig 2, only a subset of variables (the working set) is updated at each step 
and not the entire variable vector. Since the choice of working set is arbitrary at each iterative step, we denote the 
possible locations of the variable vector as circular regions that we refer to as potential regions. The radius of this region 
is the largest possible step towards the solution vector if the optimal working set was solved. The dashed lines now 
represent the path taken by the algorithm that has chosen an arbitrary sequence of working sets. We can see now that in 
the case of the decomposition method, the largest potential step (denoted by the radius of the region) does not guarantee 
the quickest convergence. From the example diagram, it is possible that there may be more than one choice of working 
set, which gives the largest step, and so the vector could possibly lie on the boundary of a potential region and the 
next update could send us away from the optimal solution. It is clear that the choice of working sets affects how quickly 
we arrive at the solution vector. A bad choice could result in the algorithm zigzagging in the feasible region Q while a 
good choice would quickly lead us to the optimal solution vector.   

α

 

Q

Start 

I3 

I2

I1

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Fig 3: Feasible region, Q with minimum point α* after iteration I1 , the

In Fig 3, we show our momentum quantity as the amoun
the vector α  to exit the feasible region . In SMO, the
binding the variables to the bounds of the constraints as 
However, from Fig 3, we can see that if the amount of m
facet and the choice of working set members may cause
this is to choose a working set that does not cause the ve
amount of overstep. This leads us to the idea of moment
section.  

IV. MOMEN

 
In any iterative algorithm, the idea is always to take the
quickest convergence. This can be done by following t
problem. However in the case of decomposition, we do
are only limited to subsets of the gradient space and if 
steepest descent may not necessarily be the best[18]. Th
section. 
 
In the case of our working set, the best that is done so f
second variable such that the step size is maximized[4]
amount of momentum  at every iterative step. In
objective function is also maximized. In a geometric 

R∆

1 2,α α not only stay within the feasible region  but 
“softly” as possible. We can see this clearly from Fig.1 
closer to the minimum α* compared to I3. We believe t
decomposition method when applied to constrained prob
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α*
∆R
 possible positions I2 and I3 for the choice of two arbitrary working  sets.   

t of overstep, if the update on an arbitrary working set causes 
 algorithm always maintains the feasibility of the solution by 
in (23). The amount of restriction is never considered further. 
omentum is large then our vector α  is too close to a boundary 

 minimal improvement to the objective function. A solution to 
ctor α  to exit the region, which can be done by minimizing the 
um minimization that is investigated further in the following 

TUM MINIMIZATION 

 best step towards the minimum of the objective function for the 
he direction of steepest descent indicated by the gradient of the 
 not have the entire gradient space available to us. Instead, we 
the solution vector lies in a constrained region, the direction of 
is fact has also been geometrically demonstrated in the previous 

ar is to pick the first variable, 1α  arbitrarily and then choose the 
. We now propose to select a working set, which minimizes the 
 doing so, the actual step ( 39) towards the minimum of the 
sense, we want to choose a working set such that the updates 
also such that if they hit a constraint boundary they do so as 
where the minimum momentum in I2 carries the solution vector 
hat this would greatly increase the rates of convergence for the 
lems.  

12



Unfortunately, the actual momentum  is only known after the step is taken or during the computation of the step. 
We could explicitly compute it beforehand by considering all the possible combinations of working set pairs at each 
iterative step. For examples, this amounts to roughly  combinations, which is obviously computationally 
expensive! Instead, we propose to use the theoretical optimal value of momentum, 

R∆

n 2n
*R∆  to predict the best choice of 2α  

which would generate momentum close to the optimal value when they are successfully updated.   
 

A. Theoretical Momentum Minimization 
 
We can then derive ∆ i.e. the optimal ∆  to obtain the minimum at every step. The stationary point of 

with respect to ∆  is found by taking the gradient of ( 39). 

*R

R

R
1 2,y yM∆

1 2,y yM∆
   

( ) ( ) ( )( ) ( )( )1 2
2, 2 1

2 2 1 1 1 1 2 2 1 11 2 22 2 1 12
( )

0y yM E E
y E y E R y x y x y K y K y y K

R
φ φ

η
∂∆ −

= − − + ∆ − − + − + =
∂∆

  

 
The optimum momentum which minimizes the step size function is then, 
  

( ) ( )( )
( ) ( )(* 2 1

2 2 1 1 1 11 2 22 2 1 122

1 1 2 2

( )1 E E
R y E y E y K y K y

y x y x ηφ φ
)y K

 −
∆ = − + + − + 

 −
   ( 47) 

 
We now derive mathematically the optimal value of ∆ by examining the cases that could arise with an arbitrary 
choice of working set pairs. 

1 2,y yM

 
Case 1:  1 2 1y y= =
 

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

* 2 1
2 1 11 22 122

1 2

2 1
2 12

1 2

( )1 2

( )1     0

E E
R E E K K

x x

E E
E E

x x

ηφ φ

η
ηφ φ

 −
∆ = − + + − 

 −

 −
= − + − = 

 −

K

     ( 48) 

                                 
Substituting ( 48) into ( 43) gives; 
 

            
2

* 2 1
1,1

(
2

E E
M

η
−

∆ =
)

          ( 49) 

 
Case 2:  1 2 1y y= = −

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

* 2 1
2 1 11 22 122

1 2

2 1
2 12

2 1

( )1 2

( )1     0

E E
R E E K

x x

E E
E E

x x

ηφ φ

η
ηφ φ

 −
∆ = − + + − − + 

 − +

 −
= − − + = 

 −

K K

    ( 50) 

                                 
 
Substituting ( 50) into ( 44) gives; 
 

            
2

* 2 1
1, 1

(
2

E E
M

η− −

−
∆ =

)
          ( 51) 

 
Case 3:  1 2y y≠
For  1 21, 1y y= = −
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( ) ( )( )
( ) ( )* 2 1

2 1 22 112

1 2

( )1     
E E

R E E K
x x ηφ φ

 −
∆ = + + −

 +
K       ( 52) 

 

( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )

( ) ( )( )
( )

( ) ( )( )
( )

( )

2 1

2 1

2 2 2* 2 1 2 1
1,1 2 1 22 11 1 2

2 22
22 1

2 1 22 112

1 2

2 2 2
22 1

22 11 22 112 2 2
1 2 1 2

1

( ) ( )
=

2 2

( )( ) 1        
2

( ) ( )           

           +

E E R E E RM R E E K K x x

E EE E
E E K K

x x

E E E EK K K K
x x x x

x x

φ φ
η η

η ηφ φ

φ φ η φ φ η

φ φ

−

− ∆ − ∆
∆ −∆ + − − + +

 −−
= − + + − 

 +  

− −
− − + −

+ +

− ( )( )
( ) ( )( )

( ) ( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )

2 1 2 1

2

2 2
2 2 1

2 1 22 114

1 2

2 2 2 2 22
22 11 22 112 12 1

2 2 2

1 2 1 2 1 2

2 2 22 2
2 1 22 11 2 1 2 1 22 11

2 2
1 2 1 2

( )

2

( ) ( )( )
        

2

( ) ( )
             +

22

E EE E K K
x x

E E K K E E K KE EE E

x x x x x x

E E K K E E E E K K

x x x x

ηφ φ

η φ φ η φ φ η φ φ

φ φ η ηφ φ

 −
+ + − 

 +

− − − −+−
= − − −

+ + +

− − + − −
+ +

+ + ( ) ( )( )
( )

( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( )

2 1

2 1

2 2
22 11

2 22
1 2 1 2

2 22 2 2 22
22 11 2 1 2 1 22 11 2 1 22 112 1

2 2 2 2 2
1 2 1 2 1 2 1 2

22
2 1 22 112 1

2
1

( )

         

( ) ( ) ( )( )
       

2 2 2

( )( )
      

2 2

E E K K

x x x x

E E K K E E E E K K E E K KE E

x x x x x x x x

E E K KE E

x

φ φ φ φ η

η η φ φ φ φ φ φ η η φ φ

η η φ φ

− −
+

+ +

− − + − − − −−
= − − − +

+ + + +

− −−
= −

+ ( )( )

2

2

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 1

2 1

2 2 2
22 112 1

2 2 2

2 1 2 1 2

2 2 22
2 1 2 12 12 1

2 2 2

1 2 1 2 1 2

( )

2

( )( ) 1 1      
2 2 2

E E K KE E

x x x x x

E E x x x xE EE E

x x x x x x

φ φ η φ φ

φ φ φ φ

η φ φ φ φ φ φ

− −+
− −

+ +

− − ++−  = + − + 
  + − +

 

 

        
( )
( ) ( )( ) ( )

2 1

2 2 22
2 12 1

2
22 111 2

( )( )

2

E EE EE E
K Kx xη φ φ

−+−
= − −

−+
       ( 53) 

 
Case 4: If , we then have the symmetry, 1 2 1 2, 1,y y y y≠ = = 1−
 

( ) ( )( )
( ) (* 2 1

2 1 22 112

1 2

( )1  
E E

R E E K
x x ηφ φ

 −
∆ = − + + −

 +
)K       ( 54) 

 

( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )

( ) ( )( )
( )

( ) ( )( )
( )

( ) ( )( )
( )

2 1 2 1

2 2 2* 2 1 2 1
1, 1 2 1 22 11 1 2

2 2 2 22
22 1

2 1 22 11 22 112 2

1 2 1 2

2
22 1

22 11 2 12 22
1 2 1 2

( ) ( )
=

2 2

( ) ( )( ) 1         
2

( ) 1           
2

E E R E E RM R E E K K x x

E E E EE E
E E K K K K

x x x x

E E
K K E E

x x x x

φ φ
η η

η ηφ φ φ φ η

φ φ η φ φ

−

− ∆ − ∆
∆ + ∆ + + − + +

 − −−
= − + + − − − 

 + + 

−
+ − + + +

+ +
( )

2

2 1
22 11

( )E E
K K

η
 −

− 
 
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( )
( ) ( )( ) ( )

2 1

2 2 22
2 12 1

2
22 111 2

( )( )

2

E EE EE E
K Kx xη φ φ

−+−
= − −

−+
                             ( 55) 

 
Generally, our idea of minimizing the momentum when considering a sub set of variables is meant to choose a working 
set that when updated, gives the best possible improvement to the objective function value. If we translate this to the 
SVM notion, we want to adjust the hyperplane in the quickest possible way such that the margin is maximized and the 
number of misclassified points is minimized. The variables or the Lagrange Multipliers of the working set directly 
determine the position of the hyperplane and they have a one to one correspondence with the data examples. This 
allows us to give in the following some geometrical interpretation of the iteration process with momentum 
minimization. 
 
From ( 48) and ( 50), we see that if the working set consists of multipliers corresponding to examples of the same class 
label, i.e. , the theoretical optimal momentum is zero. This shows that the best step size would be obtained if 
they were not allowed to exit the constraint boundaries at all. In geometric terms, we are maximizing the margin of the 
hyperplane by changing two multipliers that belong to examples of the same class. Intuitively, when doing so we 
definitely want to push the hyperplane towards the opposite half space as much as possible, which means that, the 
updated multipliers should ensure that the corresponding points remain in the correct half space. 

1y y= 2

 
In the example of Fig 4, the working set wα chosen for the next update after I0 is depicted with a circle. The initial 
hyperplane position is labeled I0 which in iteration terms corresponds to the initial state at t=0. The next iterative step is 
shown by the new hyperplane position labeled I1 and the arrows depict the direction of motion for the hyperplane. We 
can see that momentum minimization not only results in the updated hyperplane correctly classifying the working set 
elements of I0, but forces X1 that was previously misclassified  (α1=C or it is at the boundary) to become a non-bound 
Support Vector as seen when the updated hyperplane is at I1. Ideally, X2 could also be a non-bound Support Vector but 
since it was correctly classified at I0 and I1 (α2=0) then it still has minimum momentum. i.e. The multiplier α2 remained 
unchanged at the constraint boundary.  
 
 

X2

X1

I1

I0

αw

Class 2 

Class 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       Fig 4: Effect of minimizing momentum for two examples of the same class ( y1=y2 ) 

 
However, when the working set pair consists of opposite class examples, i.e. 1y y2≠ , the optimal momentum becomes 
more complex. We now have to compromise between finding the maximal margin of separation and the minimization 
of misclassified examples between the working set pair. Currently, we believe that the theoretical optimal momentum 
for ( 52) and ( 54) captures this compromise but have yet been unable to clearly prove it mathematically. The equations 
seem to indicate that for the generic case of 1y y2≠  we can at best allow the updated multipliers to hit the boundaries 
and not just touch them. We try to get an intuition for this in Fig 5, where the working set variables correspond to the 
violators X1 and X2. For the sake of illustration, let us assume that 1 2, Cα α = at 0I which we show in Fig 5. The 
updated position of the hyperplane, I1 is shown to correctly classify the two points if the minimum momentum was zero 
as with the previous case. However, we can see that at 1I the point 3X  that was previously correctly classified by 0I  
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becomes misclassified! It would seem that a better position would be the hyperplane at 2I  where now 3X  remains 
correctly classified and 2X  is also in the right half-space. However 1X  still remains misclassified ( 1 Cα = ) and would 
have some amount of momentum since it previously was at the boundary and the update would have carried it outside 
the feasible region. We are hence led to believe that the theoretical equations put a bound on the minimum amount of 
momentum that not only gives a better hyperplane position, but also the better step size towards the minimum of the 
objective function.  

2α

wα

2y y y≠

( )1 2mi α α= +

1
t

t

α

= −

= − −

 

I2

X3

X2

X1

I1 I0

αw

Class 2 

Class 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  

 

                                        Fig 5: Effect of minimizing momentum for two examples of the opposite class ( y1 ≠ y1 ) 

 

B. Approximate Momentum Minimization through heuristic implementation  
 
In the previous section, we computed the theoretical minimized momentum values, *R∆  for the two generic cases of 

 and . Some would point out that these are functions of the unknowns 1y y= 2 21y y≠ 1,α and depend very much on 
their choice beforehand. This seems to have left us in a quagmire since we cannot determine the working set choice that 
exactly minimizes momentum without trying all the possible working set combinations as before. However, this is not 
what momentum minimization attempts to do. Recall that in our decomposition setting, we are trying to select the 
second variable 2α  such that the step size is maximized and the resulting momentum for the pair is also minimized. We 
can approximate the minimum momentum by considering the generalized combinations of working sets  and then 
explicitly computing the conditions on the second variable so that the updated pair has minimal momentum. In the 
following, we examine more thoroughly the situations that arise for the generalized cases i.e.  and 1y = 1 2 . 
 

1) Working set of examples from the same class 
 
Let us examine first the situations that occur at the Upper Bound (UB) of (33), where UB n ,C . 
 
If 1 0α = and 2 Cα = , then UB 1 2α α= + , then from (33), 
 

                             ( )

1 2 1

1 2 1
1 1 2

1 2 1
2 1

1

( )

( )
    

( )
    0     only if  

t

y E E
R UB

y E E

y E E CC E
y

η

α α α
η

η
η

−
∆ = − −

−
− +

−
= = −

 

E

 

If 2 Cα ≤ , we have then the condition 2 1
1

CE E E
y
η

≤ − < 1  where we now can form our first heuristic rule.  
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H1: If 1 0α = choose 2 Cα = such that   2 1E E≤
 
We can check that the converse is true since the working set is arbitrary.  If  1 Cα = and 2 0α = , then UB 1 2α α= + , 

                                 ( )

1 2 1
1

1 2 1
1 1 2

1 2 1
2 1

( )

( )
    

( )
    0     only if  

t

tt

y E E
R UB

y E E

y E E
E E

α
η

α α α
η

η

−
∆ = − −

−
= − − +

−
= − = =

 

If 1 Cα ≤ , we have  from which the following heuristic follows as a result. 2E E≥ 1

 
H2: If 1 Cα = choose 2 0α = such that  and 2E E≥ 1 1 2y y=  
 
Now, suppose that 10 Cα< < , then UB 1 2α α= +  iff 1 2α α+ or 2 C 1α α< − . Then; 
 

                               ( )

1 2 1
1

1 2 1
1 1 2

1 2 1 2
2 2

1

( )

( )
    

( )
    0     only if  

t

tt

y E E
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y E E

y E E
E E

y

α
η

α α α
η

1
α η

α
η

−
∆ = − −

−
= − − +

−
= − − = = −

 

 
This can be further generalized to the condition in the following heuristic; 
 
H3: If 10 Cα< < choose 2 Cα ≤ such that   2 1E E≤
                                   
We can show further that for the case when UB C= , a similar heuristic set follows due to the arbitrary choice of 

1 2,α α . Note however that the optimal value of momentum from ( 48) and ( 50) is * 0R∆ = . If we examine(33), we can 
see this likely occurs when both 1 2,α α  become non-bound Support Vectors. We could then approximate the working 
set which mostly likely gives minimum momentum to consist of 1 20< , Cα α <  since in the later stages of the iteration 
only the non-bound Support Vectors have yet to be correctly determined. However, we need to compute the value of the 
objective function at each step to estimate when the algorithm is in its final stage, so this sort of heuristic is very rough 
and is not really computationally efficient.  
 

2) Working set of examples from the opposite class 
For the case where , let us first examine the Upper Bound (UB) in (33).  Let 1y y≠ 2 }{ 1 2max ,Lα α α= and suppose 

1 2α α>  and , we then have from (33); 1 1y =

                                                                  1 2
1

( )
    t E E

R Cα
η
−

∆ = − −          (56) 

From Case 3, we have  
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since 
( )
( ) ( )( )

22 11
2

1 2

1
K K

x xφ φ

−
≤

+
 and equality exists when ( )1 0xφ = .  

 
By equating (56) and (57), we get; 
 

                                                 

( )
( ) ( )( )

( )
( ) ( )( )

2 1
1 2

1 2

2 1
1 2

1 2

1

     

0

t

t

t

E E
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x x

E E
C

x x

α
φ φ

α
φ φ

α

+
− ≤

+

+
≤ +

+

→ >

 

 
Now since 1 Lα α= , then the choice of 2α  becomes 2 Cα ≤  with the maximum value of 2 Cα = . In the case that 

1 0α = , we could immediately try 2 0α =  so that there is a better chance of minimizing R∆ . We summarize this in the 
following two heuristics. 
 
H4: If 1 0α = , choose 2 0α =  if . 1 2y y≠
H5: If 1 0α > , choose 2 Cα =  if . 1 2y y≠
 
Conversely, we could also examine the Lower Bound (LB), but due to the arbitrary selection of the working sets, this 
would yield similar counterparts to the heuristics H4 and H5. We now list these several additional heuristics in addition 
to the requirement in Observation 1 that is we want to choose the working set that minimizes momentum and also  gives 
the maximal update. 
 
Momentum Minimization Heuristic Set 
 
If , we use the following heuristics to approximately minimize the momentum and such that 1y y= 2 2E E− 1  is 
maximal,  
H1: If 2 Cα = choose 1 0α =  such that   2 1E E≤
H2: If 2 0α = choose 1 Cα = such that   2 1E E≥
H3: If 20 Cα< < choose 1 Cα ≤ such that   1 2E E≤
 
If , we then use the following heuristics to approximately minimize the momentum and such that 1y y≠ 2 2 1E E−  is 
maximal,  
H4: If 2 0α = , choose 1 0α =   
H5: If 2 0α > , choose 1 Cα =   
 
Final: If updating any 1α  is still unsuccessful, try any 2α  
 
The last heuristic, simply allows the algorithm to check all possibilities to ensure that the solution is truly optimal. We 
note that this is a rough heuristic set that attempts to perform “approximate” momentum minimization. The heuristic set 
however imposes a stricter rule for the choice of working sets and no longer contains any random elements as in Platt’s 
original implementation of SMO. We note that further calculations would yield more stringent conditions on the bounds 
of  and  which are currently quite loose and based on several approximations.  1E 2E
   

V. EXPERIMENTAL RESULTS 
 
In order to investigate the performance of momentum minimization, we implemented the basic SMO update rule 
together with our heuristic set for the choice of working set members. We refer to our algorithm loosely as Momentum 
Minimization Optimization (MMO) that is an attempt to investigate our notion of momentum. We then ran a series of 
benchmarks on some well-known datasets to compare with the original SMO results. All experiments were carried out 
on a Pentium IV, 1.5 GHz computer with 256MB RAM. The SMO program and MMO were implemented on Visual ++ 
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6.0. We recorded the number of iterations and epochs required till convergence was established. Here iterations refer to 
the number of successful updates on the working sets and epochs refer to the number of loops which the algorithm goes 
through in the main program. MMO uses an SMO update rule with our heuristics for choosing working sets. Hence, 
when comparing these two Newtonian decomposition methods, we can compare the number of iterations and epochs to 
determine the improvement in performance. We have assumed that they are proportional to other performance measures 
such as CPU time, kernel computations or flop counts. We omit these measures here because our machine is different 
from Platt’s. 
 
We ran our MMO on the UCI adult data set and the web dataset[21] using the Gaussian kernels with kernel width of 10. 
We also compare the performance on our fish data set using different values of C for a Gaussian and Polynomial kernel. 
Our fish problem[22] is highly inseparable and the task is to classify 5 species of fish given 1400 examples with 10 
attributes each. For this experiment, we trained a binary SVM classifier to classify species 1 against the rest of the 
species. All experiments were carried out using a tolerance of 0.001. We note here that our implementation of Platt’s 
original pseudocode seems to give very much slower results than what was reported in [4] but nevertheless we compare 
our results against that as reported by Platt. For illustrative purposes, we compare the behavior of the negative objective 
function (8) in for the UCI 1 dataset. 
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Fig 6:  MMO and SMO: Comparison of objective function behavior for UCI adult 1.  
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               Fig 7:  SMO and MMO: Comparison of bound Support Vector behavior for UCI adult 1.  
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              Fig 8:  SMO and MMO: Comparison of non-bound Support Vector behaviour for UCI adult 1.                                                        
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Fig 9:  Performance of  original SMO against MMO across the UCI adult datasets for Gaussian kernel with C=1. 
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Fig 10: Performance of  original SMO against MMO across the UCI Web datasets for Gaussian kernel with C=5. 
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Fig 11:  Performance of  original SMO against MMO for fish data set for Gaussian kernel over a range of C.    
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Fig 12: Performance of  original SMO against MMO for fish data set for Linear kernel over a range of C. 
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 Fig 13: Performance of  original SMO against MMO for fish data set for Polynomial kernel over a range of C. 

VI. DISCUSSION 
In Fig 6, we observe that the SMO algorithm does not improve the objective function significantly when iterating over 
non-bound Support Vectors. This heuristic is employed in the second loop of Platt’s algorithm and it causes step-like 
behavior that slows down the rate of convergence of SMO. This demonstrates that the wrong choice of working sets 
does affect the convergence rates of the decomposition method. However in MMO, the objective function approaches 
the optimum value quickly and there is a strict increase in the Wolfe dual at all times. The reason for this can be seen 
from Fig 7 and Fig 8, where SMO finds the bounded and non-bounded Support Vectors rather slowly through the 
update of a random working set choice. In MMO, the necessary Support Vectors are discovered quickly through the 
proper choice of working set variables. Note also that the number of epochs required for convergence is much less in 
MMO than in SMO, indicating also that momentum minimization could help speed up the decomposition method.   
 
In the case of the UCI data sets, Fig 9 and Fig 10 we record an improvement of 20%-40% improvement to the number 
of iterations required till convergence when using MMO. This seems to empirically indicate that using an 
approximation to our momentum minimization idea does allow a somewhat better choice of working sets to be made 
during the iteration. However, we observe in the fish classification experiments, Fig 11-Fig 13 that for larger values of 
C, the speed of MMO begins to become comparable to the normal SMO.  We can explain this from a geometric 
perspective by observing that momentum minimization tries to provide the largest step of improvement to the objective 
function by ensuring that updates are not wasted trying to move variables between boundary values. However, when the 
optimal solution has many variables not at bound, momentum minimization does not influence the choice of working 
sets much. This is because most of the variables move inside the feasible region and do not hit the constraint 
boundaries, which results in an average momentum close to zero. We can see this in Fig 12 where a linear kernel does 
not separate our fish dataset well. It is also possible that a better approximation of optimal working set choice could be 
made and this problem may not be so apparent. Another way around it is to stop the iteration once the variables at 
bound have been determined and possibly apply a heuristic to check the variables not at bounds. The details of this are 
presently being worked on.  
 
Platt inadvertently proposed a decomposition algorithm with a Newton iterate rule and solved the problem of applying a 
Newton rule to large datasets without the memory constraint problem. SMO actually ends up solving the minimization 
of the gradients of the Lagrange Dual which is related to the problem solved by Joachim[11]. However, we postulate 
that the rates of convergence of SMO are no longer quadratic due to the decomposition aspect of the problem. The 
enforcement of the equality constraint in the threshold is not necessary for formulations that do not explicitly minimize 
the threshold b e.g.[22]. We have shown that the update rule of SMO is Newtonian and the algorithm which was 
pointed out to be related to Bergman methods[4]  is also simply just a bounded form of Newtonian iteration with a set 
of heuristics derived empirically. We have gone further and derived the theoretical relationship that relates the solution 
of the sub problem to the main problem. The results show that a proper choice of sub problems selected through 
momentum minimization has been shown to increase the rates of convergence. However, in some cases this may not be 
desirable if the sub problem that gives the optimal step is expensive to compute. We note that the rough heuristic set 
used here is just an approximation of the optimal momentum minimization. We could obtain a better approximation to 
the optimal minimal momentum by considering search methods and better prediction techniques. Our initial results so 
far seem to suggest that the momentum minimization idea could greatly improve the convergence when the solution for 
an optimization problem exists in a constrained region.           
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Remark 1: 
It can be seen from results above that the norm-reduction property of the decomposition method is dependant on the 
value of the step . We can see that is a function of deterministic variables  and also the value of 

. For every iterative step to be norm reducing, we require 
1 2,y yM∆

1 2,y yM∆ 1 2,y y
R∆ 0t∀ > ; 

 

1 2, 0y yM∆ <          ( 58) 
 

We can see that in all cases computed, M∆ has two common terms namely 
2

2 1(E E
η
− )

 and ( ) ( )( )
2 2

1 22
R x xφ φ∆

± . We 

note that the right hand most term is always positive regardless and minimizing this positive term requires an exhaustive 
search, which is computationally expensive. Platt’s first heuristic actually minimizes (largest negative) the first term 

since we have assumed 0η < and the term is negative. It is clear now that minimizing the term 
2

2 1( )E E
η
−

 corresponds 

directly to choosing the maximal violating pair 2 1E E−  for an arbitrary 2α .  
 
If we choose the maximal violator pair for update, we have the following for all violators; 
 
                                                             ( ) ( )( ) 0i i i i i i iy f x y f x y y E→ − → <

i <

 
 
which implies when  and vice-versa.  We then see that if 0 then 0iy E> 2 0E <  the largest difference 2 1E E−

2y
 

would most likely be found by looking for the largest  and vice versa. We then note that here,  become 
the more likely choice of candidates for the algorithm to update using the main heuristic. If this is the case, then one 
immediate improvement to the heuristic set is to further investigate a better estimate for minimizing the momentum in 
the selection of variables where . 

1 0E > 1y ≠

1 2y y≠
 
Remark 2: 
From observation 1, we choose maximal violators to minimize the negative terms but we have yet to show that the step 
size function,  is always negative or towards the minimum of the objective function. In fact, we have the 
following necessary conditions from ( 43) and ( 45); 

1 2,y yM∆

a) If y y ,   if and only if for some1 2=
1 2, 0y yM∆ < 1 2,α α ; 

 ( ) ( )( )
2 2 22 1

1 2
( )

2 2
E E R x xφ φ

η
− ∆

< −   

b) If y y ,  if and only if for some1 2≠
1 2, 0y yM∆ < 1 2,α α ; 

( ) ( )( ) ( ) ( )
2 2 22 1 2 1

1 2 2 1 22 11
( ) ( )

2 2
E E R E ER x x R E E K Kφ φ

η η
− ∆∆

< − − ∆ + − −
−

         

 
However, if we choose 1 2,α α such that  then we are assured that *R R∆ = ∆

1 2, 0y yM∆ <  holds always due to observation 
1. Case 1 and Case 2 are obvious because the optimal step size is the potential step (40) which is always negative since 

0η < . We show this for Case 3 and Case 4 where we have; 
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≤

 ( 59) 

 
Thus, we have shown that minimizing momentum not only increases the rate of convergence of the decomposition 
method, but also ensures that the actual step size is towards the minimum of the objective function for an arbitrary 
working set.  
 
Remark 3: 
We note that ( 39) is a convex quadratic function in terms of momentum R∆ . This leads us to believe that we could 
attach some notion of direction to the iteration process as with actual momentum in physics. At this stage, it still 
remains a subject of further investigation for us. 

VII. CONCLUSION 
We have presented an iteration measure that gives some indication for the choice of optimal variables to be included in 
a working set for the decomposition technique. We have demonstrated that minimizing our proposed iteration 
momentum improves the rates of convergence greatly for the decomposition method. Future work will concentrate on 
improving the prediction techniques to obtain near optimal momentum minimization. We are currently investigating the 
effect of momentum minimization for more complex boundary geometries and also the effect of applying extrapolation 
while minimizing momentum. 

VIII. APPENDIX 
 

A. SMO update is a Newton method 
We expand the update rule (22); 
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t t t y f x y y y f xE E
y

K K K K K K
α α α+ )− − +−

= + = +
+ − + −                            (A1) 

 
Now, we simplify (26), 
 

        

( )

( )( )
( )( )

( )

2

11 2 22 2 12 2 12 2 2 2 2 1

11 1 2 2 22 2 12 2 12 1 2 2 2 2 1 1 12 2 2 22

2 1 1 1 11 1 2 21

1 11 22 2 12 2 1 12 2 2 1 12 2 22

( ) ( ) 1

( ) ( )

  1

sK s K K sK s y v y v s

sK s s K K sK s s y f x b y K y K

y f x b y K y K s

s K K K s K y f x s K K

α
γ α α α γ α

α α α α α α α α α α

α α

α α α α α α

∇ℑ

= − − + − − − + − +

= + − − + − + − − + − −

+ + − − − +

= − + − − + + + ( )
( ) ( )
( ) ( )

2 1 1 11 2 21

2 1 2 2

2 1 1 2 2 2

1

1

1

y f x s K K s

y f x y f x s

y f x y y y f x

α α− + − +

= − − +

= − − +

 

 
Then using (27) we get the required relationship; 
  

 23

MECSE-30-2003: "A new method to select working sets for ...", D.Lai, N.Mani and M.Palaniswami



 

( ) ( )

( )

2 1 2 1 2 21
2 2

11 22 12

2
2

2

( 1
( 2 )

( )
     

( )

t t

t

y f x y y y f x
K K K

α α

α
α

α

+ )− − +
= +

+ −
∇ℑ

→ −
∇ ∇ℑ

                                                                            (A2) 

 
Since 2α  is arbitrary, we get the following relationship for 1α ; 
 

                                                                                                            (A3) 

( )
( )
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2 2 1 2

1 1 2 2 1

1 2 1
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( )

           

            = -
           ( )

y E E

y y y E E

sy E E
s

α

α

∇ℑ = −

= − −

−

= − ∇ℑ
 
We note that (27) implies ( ) (2( ) ( ))1α α∇ ∇ℑ = ∇ ∇ℑ since 2α  is arbitrary. Then, we have from (25) the following 
result; 
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m

                                      (A4) 

B. Gateux-differentiable functions 
Definition VIII.1 (Ortega[5]) 

A mapping : nF D R R⊂ →

)m

is G-differentiable at an interior point of D if there is some linear operator, 
( ,nA L R R∈  so that for any , nh R∈

 

                                    ( )( )
0

1lim 0                      
t

F x th Fx tAh
t→

+ − − = •                 
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