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Abstract:   

Estimating information from data with multiple structures has obtained more and more attention 

in computer vision community. When data include multiple structures, two major steps should be 

taken: i) robustly estimate the parameters of a model, and ii) differentiate inliers from outliers. In 

this paper, we propose two new robust techniques — robust Two-Step Scale estimator (TSSE) and 

robust Adaptive Scale Sample Consensus (ASSC) estimator. The first estimator (TSSE) applies 

nonparametric density estimation and density gradient estimation techniques, to robustly estimate 

the scale of inliers for heavily contaminated data. The second estimator (ASSC) is a complete 

robust fitting estimator. ASSC is based on both Random Sample Consensus (RANSAC) and TSSE. 

The ASSC estimator can tolerate more than 80% outliers. The main advantage of the ASSC 

estimator over RANSAC is that prior knowledge about the scale of inliers is not needed. The ASSC 

estimator can simultaneously estimate the parameters of a model and the scale of inliers 

belonging to that model. Comparative experiments show that the ASSC estimator has better 

robustness to heavily corrupted data with multiple structures than other robust methods: such as 

Least Median Squares (LMedS), Residual Consensus (RESC), and Adaptive Least Kth order 

Squares (ALKS).  

 

1. Introduction 

Multiple structures can occur in many computer vision problems such as range image 

segmentation, optical flow calculation, motion segmentation, etc. Great efforts have been made in 

the search for highly robust estimators that can deal with multiple-structural data in recent decades 

[2, 3, 16, 23, 26, 29]. A robust estimation technique is a method that can resist the influence of 

outliers ("bad data" and data associated with other structures are both called outliers in this paper).  

The least squares (LS) method can achieve optimal results under Gaussian distributed noise. 

However, this method is not robust because it is extremely sensitive to outliers (either gross errors 

or samples belonging to another structure and distribution). The breakdown point of an estimator 

may be roughly defined as the smallest percentage of outlier contamination that can cause the 
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estimator to produce arbitrarily large values ([20], pp.9.). Because one single outlier is sufficient 

to force the LS estimator to produce an arbitrarily large value, the LS estimator has a breakdown 

point of 0%. 

 

It is almost unavoidable that data are contaminated (due to faulty feature extraction, sensor noise, 

segmentation errors, etc) and it is also likely that the data will include multiple structures. Thus, 

there has recently been a general recognition that all computer vision algorithms should be robust 

[12]. When data include multiple structures, the structured data that are inliers to one model, can 

be outliers to another model. In contrast to uniformly distributed outliers and clustered outliers, 

these structured outliers are sometimes called pseudo outliers [24]. 

 

Although several robust estimators were developed during the past three decades, most of them 

(such as M-estimators [14], LMedS and LTS [18, 20], RM [21], etc) can only tolerate up to 50% 

gross errors. These traditional robust estimators assume that inliers occupy the absolute majority 

of the whole data. However, this assumption is far from being satisfied for the real tasks faced in 

computer vision [26]. In computer vision tasks, it frequently happens that gross noise and pseudo 

outliers occupy the absolute majority of the data. For example, when data include two structures 

(lines) and randomly distributed noise (see figure 5 (b)-(d)), no single structure occupies an 

absolute majority of the whole data set. In this case, traditional methods will break down because 

their basic assumption (i.e., inliers occupy the absolute majority) is violated. For this kind of case, 

we need to find a more robust estimator that can tolerate more than 50% outliers. 

 

Some robust techniques: Hough Transform [13, 15] and RANSAC [10] were developed in the 

vision community. They need user to provide certain crucial parameters: a priori bin size (for 

Hough Transform) or priori error tolerance (for RANSAC). The bin size and the error tolerance 

are related to the scale of inliers. Thus, given the correct scale, both techniques can achieve good 

results for data with more than 50% outliers. However, a priori knowledge about the scale of the 

inlier is not often available. If the scale is wrongly provided, these two methods will fail.  This 

problem greatly limits their application in many computer vision tasks.  

 

RESC is one successful example of highly robust methods [29] and it can tolerate more than 80% 

outliers. The RESC method uses a compressed histogram method to infer residual consensus. 

Instead of using the size of the residuals as its criteria, the RESC method uses the “histogram 

power” as its criteria. The RESC method finds the parameters by choosing the p-subset 
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corresponding to the maximum histogram power. Unfortunately, the method needs the user to tune 

many parameters in compressing histogram. We also found the RESC method, after finding the 

parameters of a model, overestimates the scale of inliers (see section 2.4).  

 

MINPRAN is another kind of estimator that claims to tolerate more than 50% outliers [23].  It can 

find the correct model in the data involving more than 50% outliers without a priori knowledge 

about error bounds and it claims that it does not “ hallucinate” fits when there are no real 

structures in the data. However, MINPRAN assumes that the outliers are randomly distributed 

within a certain range. This makes MINPRAN less effective in extracting multiple structures. 

 

The techniques MUSE [17] and ALKS [16] incorporate robust scale estimation, and both  

methods can arguably tolerate outliers in excess of 50%. MUSE and ALKS can perform better 

than LMedS and M-estimators at small-scale discontinuities. However, MUSE needs a lookup 

table for the scale estimator correction; ALKS is limited in its ability to handle extreme outliers. 

Another problem we found in ALKS is its lack of stability under a small percentage of outliers 

[26]. 

 

Bab-Hadiashar and Suter [1] have used least K-th order (rather than median) methods and a 

heuristic way of estimating scale to perform range segmentation. However, though their method 

can handle large percentages of outliers and pseudo-outliers, it does not seem to be successful in 

tolerating extreme cases. 

 

Having a correct scale of inliers is crucial to the robust behaviour of an estimator. The success of 

some robust estimators is based on having correct initial scale estimate, or the correct setting of a 

particular parameter that is related to scale (e.g., RANSAC, Hough Transform, M-estimators etc.). 

However, their performance crucially depends on that user-provided scale-related knowledge. 

Robust scale estimation is often attempted during a postprocessing stage of robust estimators 

(such as LMedS, LTS, etc.). Yet, although there are a lot of papers that propose robust estimators 

with high breakdown point for model fitting, robust scale estimation is relatively neglected. We 

will, in this paper, investigate the behaviour of several state-of-the-art robust scale estimators for 

data with multiple structures, and propose a novel robust scale estimator (TSSE).  

Furthermore, based on TSSE and RANSAC, we will propose a new robust estimator — called 

Adaptive Scale Sample Consensus (ASSC) estimator. The ASSC estimator is very robust for data 
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involving high percentages of outlier and multiple structures. It can tolerate more than 80% 

outliers. 

The main contributions of this paper can be summarized as follows:  

• We investigate robust scale estimation and propose a novel and effective robust scale 

estimator: Two-Step Scale Estimator (TSSE), based on nonparametric density estimation 

and density gradient estimation techniques.  

• Based on RANSAC and TSSE, we propose a highly robust estimator: Adaptive Scale 

Sample Consensus (ASSC) estimator. The ASSC estimator is an important improvement 

over RANSAC because no priori knowledge concerning the scale of inliers is necessary 

(the scale estimation is data driven). ASSC can tolerate more than 80% outliers and 

multiple structures. 

• Comparative experiments show that both the TSSE and ASSC estimators are highly robust 

to heavily corrupted data with multiple structures and they outperform the competing 

methods. 

This paper is organized as follows: in section 2, we review previous robust scale techniques. In 

section 3, the density gradient estimation and mean shift/mean shift valley method are introduced, 

and the robust scale estimator: TSSE is proposed. TSSE is experimentally compared with five 

other robust scale estimators, using data with multiple structures, in section 4. The robust ASSC 

estimator is proposed in section 5 and comparative experimental results for 2D and 3D examples 

are contained in section 6. We conclude in section 7.  

2. Robust scale estimators 

The emphasis in most past work presenting robust estimators was on the high breakdown point 

[16, 17, 20, 23, 29], i.e. the estimator that can correctly find the parameters of a model from the 

data which are heavily contaminated. Whether or not the inliers can be successfully differentiated 

from the outliers depends on two factors: (1) whether the parameters of a model are correctly 

found; and (2) whether the scale of inliers is correctly estimated. Step (2), scale estimation plays 

an important role in the overall robust behavior of these methods. Some robust estimators, such as 

M-estimators, RANSAC, Hough Transform, etc., put the onus on the "user" - they simply require 

some user-set parameters that are linked to the scale of inliers.  Others, such as LMedS, RESC, 

MDPE [26],, etc., use an auxiliary estimate of scale (after finding the parameters of a model) 

during a post-processing stage, which aims to differentiate inliers from outliers.  

In this section, we will review several state-of-the-art robust scale estimators. 
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2.1 The Median and Median absolute deviation (MAD) scale estimator  

Among many robust estimators, the sample median is one of the most famous estimators. The 

sample median is bounded when the data include more than 50% inliers. A robust median scale 

estimator is then given by [20]: 

                                                                  (2.1) 

 

where xi is the residual of i'th sample, n is the number of sample points and p is the dimensions of 

parameter space (e.g., 2 for a line, 3 for a circle).  

The inliers are usually taken to the data points that satisfy the following condition: 

                                                                 T< xj/M                                                               (2.2) 

where T is a threshold. T is usually set to 2.5. 

A variant, MAD, is also used to estimate the scale of inliers [19]: 

         MAD=1.4826medi{|xi-medjxj|}          (2.3) 

The MAD estimator is very robust to outliers and has a 50% breakdown point. The outliers can be 

recognized by computing: 

n

jji

MAD

xmedx −
            (2.4) 

When equation (2.4) for a point xi drawn from a sample {xj} exceeds a threshold, say 2.5, an 

outlier is recognized.  

 

The median and MAD are often used to yield initial scale values (before estimating the parameters 

of a model) for many robust estimators. These two methods can also serve as auxiliary scale 

estimators (after finding the parameters of a model) for other robust estimators.  

 

Because the median and MAD have 50% breakdown points, they will break down when the data 

include more than 50% outliers. Both methods are biased for multiple-mode cases even when the 

data contains less than 50% outliers (see section 4).  

 

2.2 Adaptive Least K-th Squares (ALKS) Estimator 

The authors of ALKS [16] consider robust k scale estimation and they search for a model by 

randomly choosing p-subsets and minimizing the k-th order statistics of the squared residuals. The 

robust k scale estimate, assuming inliers have a Gaussian distribution, is given by:  

2)51(4826.1 ii
xmed

pn
M

−
+=
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where kd̂ is the half-width of the shortest window including at least k residuals; ][1 ⋅Φ −  is the 

argument of the normal cumulative density function.  
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The authors assume that when k is increased so that the first outlier is included, the increase of 

kŝ is much less than that of kσ̂ . 

 

ALKS is limited in its ability to handle extreme outliers. Another problem we found [26] in ALKS 

is its lack of stability under a small percentage of outliers. 

 

2.3 Modified Selective Statistical Estimator (MSSE) 

Bab-Hadiashar and Suter [1] use the least k-th order (rather than median) methods and a heuristic 

way of estimating scale to perform range segmentation. After finding a fit, they try to recognize 

the first outlier, corresponding to where the k-th residual "jumps", by looking for a jump in the 

unbiased scale estimate formed by using the first k-th residuals in an ascending order: 

 

                          (2.7)

    

where p is the dimension of the model.  

 

They assume that when k is increased, the value of the k-th residual will jump when it comes from 

a different distribution, leading to a corresponding jump in kσ . Thus, emphasis is shifted from 

using a good scale estimate to define the outliers, to finding the point of breakdown in the 

unbiased scale estimate (thereby signaling the inclusion of an outlier)  as defined by the first k that 

satisfies the following inequality: 
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                  (2.8) 

Because this method does not rely on the k-th order statistics for the scale estimate (it uses only 

the first k data points that has been classified as inliers), it is unbiased even when the data include 

multiple-structures. 

However, though their method can handle large percentages of outliers and pseudo-outliers, it 

does not seem as successful in tolerating extreme cases. 

 

2.4 Residual Consensus (RESC) Method 

 
RESC is another successful example of a recent robust method [29]. After finding a fit, it 

estimates the scale of the fit by directly calculating: 

 

           (2.9)

   

where ch is the mean of all residuals included in the compressed histogram; α is a correct factor 

for the approximation introduced by rounding residuals in a bin of histogram to δi  (δ is the bin 

size of the compressed histogram); v is the number of bins of the compressed histogram.  

 

However, we find that the estimated scale is overestimated for the reason that, instead of summing 

up squares of the differences between all individual residuals and the mean residual in the 

compressed histogram, equation (2.9) sums up the squares of the differences between residuals in 

each bin of compressed histogram and the mean residual in the compressed histogram. 

 

To reduce this problem, we propose an alternative form: 

 

         (2.10) 

 

where nc is the number of data points in the compressed histogram. 

 

1
11

2

2

2
1

+−
−

+>+

pk
T

k

k

σ
σ

2/1

1

2

1

))(
1

1( ∑
∑ =

=

−
−

=
v

i

cc
iv

i
c
i

hih
h

δασ

2/1

1

2

1

))(
1

1( ∑
∑ =

=

−
−

=
cn

i

c
iv

i
c
i

hr
h

ασ

MECSE-8-2003: "ASSC A New Robust Estimator for Data with Multiple ...", Hanzi Wang and David Suter



 8

3. A robust scale estimator: TSSE 

In this section, we will introduce some density estimation and density gradient estimation 

techniques. Then, we propose a highly robust scale estimator (TSSE), which is very robust to 

multiple-structural data.  

 

3.1 Density Gradient Estimation and Mean Shift Method 

There are several nonparametric methods available for probability density estimation: the 

histogram method, the naive method, the nearest neighbor method, and kernel estimation [22]  

The kernel estimation method is one of the most popular techniques. Given a set of n data points 

{Xi}i=1,…,n in a d-dimensional  Euclidian space Rd, the multivariate kernel density estimator with 

kernel K and window radius (band-width) h is defined as follows ([22], p.76) 

 

                                                                     (3.1) 

 

The kernel function K(x) should satisfy some conditions ( [25], p.95).  

 

There are several different kernels. The Epanechnikov kernel ([22], p.76) is one optimum kernel 

which yields minimum mean integrated square error (MISE): 
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where cd is the volume of the unit d-dimensional sphere, e.g., c1=2, c2=π, c3=4π/3. 

 

The estimate of the density gradient can be defined as the gradient of the kernel density estimate 

(3.1) 
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According to (3.3), the density gradient estimate of the Epanechnikov kernel can be written as 
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where the region Sh(x) is a hypersphere of the radius h, having the volume d
d ch , centered at x, 

and containing nx data points. 
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The mean shift vector Mh(x) is defined as  

                                                  xX
n

xX
n xSX

i
xxSX

i
x hihi

−=−≡ ∑∑
∈∈ )()(

h
1][1 (x)M                      (3.5) 

Equation (3.4) can be rewritten as   

         
)(ˆ
)(ˆ

2
 (x)M

2

h
xf
xf

d
h ∇
+

≡           (3.6) 

Equation (3.6) firstly appeared in [11]. Equation  (3.5) shows that the mean shift vector is the 

difference between the local mean and the center of the window.  Equation (3.6) shows the mean 

shift vector is an estimate of the normalized density gradient. The mean shift is an unsupervised 

nonparametric estimator of density gradient. One characteristic of the mean shift vector is that it 

always points towards the direction of the maximum increase in the density. 

 

The Mean Shift algorithm can be described as follows: 

1. Choose the radius of the search window and initialize the location of the window. 

2. Compute the mean shift vector Mh(x). 

3. Translate the search window by Mh(x). 

4. Step 2 and step 3 are repeated until convergence. 

 

The converged centers (or windows) correspond to modes (or centers of the regions of high 

concentration) of data represented as arbitrary-dimensional vectors. Since its introduction by 

Fukunaga and Hostetler [11], the mean shift method has been extensively exploited and applied in 

low level computer vision tasks [4-7] for its ease and efficiency.   

 

Almost all published methods, which employ the mean shift method, use its hill climbing property 

to find the peaks of some functions of interest (residual pdf’s in our case). However, sometimes it 

is very important to find the valleys. Two recently published papers investigate this in the context 

of mean shift [8, 27]. Although the employed kernel in these two papers is different (the Gaussian 

kernel in [8]; the Epanechnikov kernel in [27]) and the name of the local minimum density point is 

different (called saddle point in [8]; and valley point in [27]), both methods seek for the local 

minimum density. In next subsection, we will summarize a simple mean shift valley algorithm 

[27]. 
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3.2 Mean Shift Valley Algorithm 

One characteristic of the mean shift vector is that it always points towards the direction of the 

maximum increase in the density. Thus the opposite direction of the mean shift vector will always 

points toward to a local minimum density. 

 

In order to find valley in density space, we define the mean shift valley vector: 

 

                  (3.7)  

 

Replace )(M h x in (3.6) by )(MVh x , we can obtain: 

                  (3.8) 

 

)(MVh x always points towards the direction of the maximum decrease in the density. 

 

In practice, the step-size given by the above analysis may lead to oscillation. We have observed 

this case particularly when finding valleys (although the potential exists when seeking peaks as 

well). Thus we derive a recipe for avoiding the oscillations in valley seeking. 

 

Let {yk}k=1,2… be the sequence of successive locations of the mean shift valley procedure, then we 

have, for each k=1,2…, 

                                        yk+1=yk+ )( kh yMVp ⋅                          (3.9) 

p is a correction factor, and 10 ≤< p . If the shift step at yk is too large, it causes yk+1 to jump over 

the local valley and thus oscillate over the valley. This problem can be avoided when we adjust 

the correction factor p so that MVh(yk)T MVh(yk+1)>0. 

 

The mean shift valley algorithm can be described as:  

1. Choose the radius of the search window, set p =1, and initialize the location of the window  

2. Compute the shift step vector MVh(yk). 

3. Compute 1+ky  by equation (3.9) and )(MV 1h +ky . 

4. If MVh(yk)T MVh(yk+1)>0, go to step 5; Otherwise, we let p=p/2. Repeat step 3 and 4 until            

            MVh(yk)T MVh(yk+1)>0;  

5. Translate the search window by )( kh yMVp ⋅ . 

6. Repeat step 2 to step 5 until convergence. 
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There is one exceptional case: when there are no local valleys (e.g., uni-modal), the mean shift 

valley method is divergent. This can be easily avoided by terminating when no samples fall within 

the window. 

 

3.3 Bandwidth Choice 

 

One crucial issue in the non-parametric density estimation, in the mean shift, and in mean shift 

valley methods, is how to choose bandwidth h. There are a lot of papers discussing the choice of 

bandwidth [7, 9, 25]. Because we apply the mean shift method and estimate the density in one-

dimensional residual space, a simple over-smoothed bandwidth selector can be employed [25]. 

                           (3.10)   

 

where         and                . S is the sample standard deviation. 

 

The median, MAD or robust k scale estimator can be used to yield an initial scale estimate. ĥ  will 

provide an upper bound on the AMISE (asymptotic mean integrate error) optimal bandwidth 

AMISEĥ . The median, MAD, and robust scale estimator may be biased for data with multi-model 

case. This is because these estimators are proposed assuming the whole data have a Gaussian 

distribution. Because the bandwidth in equation (3.10) is proportional to the estimated scale, the 

bandwidth can be set as c ĥ , where c is a correct factor (0<c<1) and is used to avoid over-

smoothing ([25], p.62).  

 

To illustrate the mean shift and mean shift valley method, three normal modes (mode 1 includes 

600 data points with mean 0.0, mode 2 includes 500 data points with mean 4.0, and mode 3 

includes 600 data points with mean 8.0) with total 1700 data points were generated (see figure 1). 

To find local peaks, we set two initial points: P0 (-2.0) and P1(5.0). After applying the mean shift 

method, we obtained the two local peaks: P0’(0.01) and P1’(4.03). Similar, we applied the mean 

shift valley method to find the local valleys. We selected two initial points: V0 (0.5) and V1 (7.8). 

The mean shift valley method automatically found the local minimum densities. Precisely, V0’ 

was located at 2.13, and V1’ was at 6.00.  
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Fig. 1. An example of applying the mean shift method to find local peaks and applying the mean 

shift valley method to find local valleys. 

 

3.4 Two-step scale estimator (TSSE) 

We base our method of scale estimation on the assumption that the inliers occupy the relative 

majority, and are Gaussian or Gaussian-like distributed, but the whole data can include multi-

structural distributions.  Thus, we propose a robust two-step method to estimate the scale of the 

inliers.  

(1) Because the inliers have Gaussian or Gaussian-like distribution, we use mean shift, with initial 

center zero, to find the local peak, and then we use the mean shift valley to find the valley next 

to the peak. All these are performed in ascending ordered absolute residual space. Thus, modes 

other than the inliers will be disregarded as they lie outside the obtained valley. 

(2) We estimate the scale of the fit by the median scale estimator on the points within the obtained 

window centered at the local peak. 

 

TSSE is very robust to outliers and can resist heavily contaminated data with multiple structures. 

In next section, we will compare the achievements of our method and other five methods. The 

experiments will show the advantages of the proposed method over other methods.  

 

4. Experimental comparisons on scale estimation 

In this section, we will investigate the behavior of several state-of-the-art robust scale estimators 

that are widely used in computer vision community and show the weakness of these scale 
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estimation techniques. We assume we know the parameters of the model. In the following 

experiments, we compare the proposed method — TSSE, with other five robust scale estimators: 

the median, MAD, ALKS, MSSE, and the revised RESC (according to equation 2.10). 

Comparative experiments show the proposed method achieve better results than the other five 

robust scale estimators.   

 

The signals were generated as follows: The i'th structure has γi data points, corrupted by Gaussian 

noise with zero mean and standard variance σi. α data points were randomly distributed in the 

range of (0, 100).  

4.1 Normal distribution 

First, we generate a simple line signal: One line: x:(0-55), y=30, γ1=10000, σ1=3; α=0, i.e., 100% 

inliers; After we applied the six robust scale estimators to the signal, we obtained the median 

(3.0258); MAD (3.0237); ALKS (2.0061); MSSE (2.8036); the revised RESC (2.8696); and TSSE 

(3.0258). Among these six comparative methods, the median, MAD, and TSSE gave the most 

accurate results. ALKS gave the worst result. This is because the robust estimate kŝ is an 

underestimate of σ  for all values of k (17, p.202) and because the criterion (2.6) estimates the 

optimal k wrongly. ALKS used only about 15% data as inliers. MSSE used 98% data points as 

inliers, which is reasonably good.   

4.2 Two-mode distribution 

In this subsection, we use relatively complicated data. We generated a step signal so that the data 

include two structures, i.e. two lines. 

A step signal: line1: x:(0-55), y=40, γ1=3000, σ1=3; line2: x:(55-100), y=70, γ2=2000, σ2=3; α=0. 

The results that we obtained are as follows: the median (6.3541); MAD (8.8231); ALKS (3.2129); 

MSSE (2.8679); the revised RESC (2.9295); and TSSE (3.0791). Among these six comparative 

methods, the median and MAD gave the worst results. This is because the median and MAD scale 

estimators assume the residuals of the whole data are at Gaussian distribution, which is violated in 

the signal (containing two modes). The other four robust scale estimators yield good results. 

4.3 Two-mode distribution with random outliers 

Next, we again use the above one-step signal. However, we increased the number of outliers so 

that the data include 80% of outliers, i.e., γ1=1000; γ2=750; α=3250. 
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After applying the six methods, the estimated scale of the signal that we obtained are: the median 

(34.0962); MAD (29.7909); ALKS (7.2586); MSSE (27.4253); the revised RESC (24.4297); and 

TSSE (4.1427). From the obtained results, we can see that only the proposed method gave a 

reasonably good result, while all other five methods failed to estimate the scale of the inliers when 

the data involve a high percentage of outliers.  

4.4. Breakdown plot 

4.4.1 A roof signal 

We generate a roof signal containing 500 data points in total.  

A roof: x:(0-55), y=x+30, γ1, σ=2; x:(55-100), y=140-x, γ2=50; σ=2. 

At the beginning, we assign 450 data point to γ1 and the number of the uniform outliers α =0; 

Thus, the data include 10% outliers. Then, we decrease γ1, and at the same time, we increase α so 

that the total number of data points is 500. Finally, γ1=75, and α=375, i.e. the data include 85% 

outliers. The results are repeated 20 times. 

Figure 2 shows that TSSE yielded the best results among the six comparative methods. The 

revised RESC method begins to break down when the outliers occupy around 60%. MSSE gave 

reasonable results when the percentage of outliers is less than 75%, but it broke down when the 

data include more outliers. Although the breakdown points of the median and the MAD scale 

estimators are as high as 50%, their results deviated from the true scale even when outliers are less 

than 50% of the data. They are biased more and more from the true scale with the increase in the 

percentage of outliers. ALKS yielded less accurate results than TSSE, and less accurate results 

than the revised RESC and MMSE when outliers are less 60%.  

 

 

 

 

 

 

 

 

 

                Fig. 2. Breakdown plot of six methods in estimating the scale of a roof signal. 
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4.4.2 A step signal  

 

 

 

 

 

 

 

 

 

              Fig. 3. Breakdown plot of six methods in estimating the scale of a step signal. 

 

We generated another signal: one-step signal that contains 1000 data points in total.  

One-step signal: x:(0-55), y=30, γ1, σ=2; x:(55-100), y=40, γ2=100; σ=2.  

At the beginning, we assign γ1 900 data points and the number of the uniform outliers α =0; Thus, 

the data include 10% outliers. Then, we decrease γ1, and at the same time, we increase α so that 

the number of the whole data points is 1000. Finally, γ1=150, and α=750, i.e. the data include 85% 

outliers. 

 

From figure 3, we can see TSSE gave the most accurate estimation of the scale of the signal. In 

contrast, the revised RESC begins to break down when the number of outliers is about 50% of the 

data.  MSSE gave reasonable results when the percentage of outliers is less than 70%. However, it 

broke down when the data include more outliers. The median and the MAD scale estimators are 

more and more biased with the increase in the percentage of outliers for the two-structured signal. 

ALKS yielded less satisfactory results. 

 

Compared with figure 2, we can see that the revised RESC, MSSE, and ALKS yielded less 

accurate results for small scale step signal than roof signal, but the results of the proposed TSSE 

are similar accurate for both types of signals. Even when the data include 85% outliers, the 

recovered scales of inliers by TSSE for the one-step signal are 2.95, which is reasonably good.   
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4.4.3 Breakdown plot for robust k scale estimator 

 

 

 

 

 

 

 

 

 

 

                                   Fig.4 Breakdown plot of different robust scale estimator 

 

If the data have a Gaussian like distribution, the median scale estimator (2.1) is only one possible 

robust k scale estimator (2.5). We investigated the achievements of the robust k scale estimator 

after the correct parameters of a model have been found. Let:   

 

                       (4.1) 

 

where q is set from 0 to 1. Thus S(0.5) is the median scale estimator.  

We generated a one-step signal containing 500 data points in total.  

One-step signal: x:(0-55), y=30, γ1, σ=1; x:(55-100), y=40, γ2=50; σ=1.  

At the beginning, γ1 = 450 and α =0; Then, we decrease γ1, and at the same time, we increase α 

until γ1=50, and α=400, i.e. the data include 90% outliers. 

 

Consider the dual issues of parameter estimation and sale estimation. As figure 4 shows, after 

finding the robust estimate of the parameters of a model, the accuracy of S(q) is increased with the 

decrease of q.  When the outliers are less than 50% of the whole data, the difference for different 

values of q is small. However, when the data include more than 50% outliers, the difference for 

various values of q is large. This provides a useful cue for robust estimators, which use the median 

scale method to recovery the scale of inliers. 

]2/)1[(

ˆ
)( 1 q

d
qS q

+Φ
= −
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From the experiments in this section, we can see the proposed TSSE is a very robust scale 

estimator, and it achieves better results than the other five comparative methods when the 

parameter of a model is known. In practice, however, the parameters of a model are to be 

estimated. When the parameters of a model are unknown, we need a robust estimator to estimate 

the parameters. In the next section, we will propose a new robust estimator—Adaptive Scale 

Sample Consensus (ASSC) estimator, which can estimate the parameters and the scale 

simultaneously. 

 

5. Robust Adaptive Scale Sample Consensus Estimator 

 
Fischler and Bolles [10] provided a generate-and-test paradigm: RANdom Sample Consensus 

(RANSAC). They used the minimum number of data points, a p-subset (p is the dimension of 

parameter space, e.g., p=2 for line fitting, p=3 for plane fitting), necessary to estimate the 

parameters θ of the model. Like LMedS, RANSAC use a random sampling technique, randomly 

sample p-subsets from the whole data until at least one p-subset is clean. A p-tuple is “clean” if it 

consists of p good observations without contamination by outliers. One performs m times the 

random selections of p-tuples, where m is chosen so that the probability P that at least one of the 

m p-tuples is “clean” is almost 1. Let ε be the fraction of outliers contained in the whole set of 

points. The probability P can be expressed as follows ([20], pp.198): 

                                                                     P=1-(1-(1- ε)p)m                                         (5.1) 

Thus one can determine m for given values of ε, p and P by: 

                                 
])-1(1log[

)1log(
p

Pm
ε−

−
=                      (5.2) 

The criterion of the RANSAC method is to maximize the number of data points within the user-

set error bound. Clearly, this bound is related to the scale of the inliers (S). Mathematically, the 

RANSAC estimate can be written as: 

                  θθ
θ ˆˆ

maxargˆ n=            (5.3) 

where 
θ̂

n  is the number of points whose absolute residual in the candidate parameter space is 

within the error bound (i.e., Sr 5.2≤ ));θ̂  is the estimated parameters from one of the randomly 

chosen p-subsets. 
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The error bound in RANSAC is crucial to the achievements of RANSAC. Provided with a correct 

error bound of inliers, the RANSAC method can find a model even when data contain a large 

percentage of gross errors.  However, when the error bound is wrongly given, RANSAC will 

totally break down even when outliers occupy small percentages of the whole data [26]. Thus the 

major problem with RANSAC is that the technique needs priori knowledge of the error bound of 

inliers, which is not available in most practical vision tasks.  

 
5.1 The algorithm of Adaptive Scale Sample Consensus Estimator 

 

We assume that when a model is correctly found, two criterions should be satisfied: 

1. The number of data points (nθ) near or on the model should be as large as possible; 

2. The residuals of the inliers should be as small as possible. Correspondingly, the scale (Sθ) 

should be as small as possible. 

 

RANSAC only considers the first criterion in its objective function. Our objective function 

considers both criteria. Thus, we define our objective function as nθ/Sθ. The ASSC estimator can 

be written as:  

)/(maxargˆ
ˆˆˆ θθθ

θ Sn=      (5.4) 

The improvements of the proposed ASSC estimator over RANSAC are: 

 

• In the objective function of the proposed method, both the number of data points within an 

error bound and the corresponding scale are considered. While in the RANSAC method, 

only the first criterion is considered. 

• No priori knowledge about the scale of inliers is necessary in the proposed method. The 

robust ASSC estimator yields the estimated parameters of a model and the corresponding 

scale simultaneously. 

 

The ASSC estimator is an extended version of RANSAC. When the estimate of the scale is fixed, 

equation 5.4 is another form of RANSAC with the score nθ scaled by 1/S (i.e, a fixed constant for 

all p-subsets). Because RANSAC estimates the parameters of a model by finding the relative 

maximum score, the scaling in the score nθ does not affect the results. ASSC is more reasonable 

because the scale is different for each candidate fit determined by each p-subset.  
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The procedure of the ASSC estimator algorithm is as follows: 

(1) Randomly choose one p-subset from the data points, estimate the model parameters using 

the p-subset, and calculate the ordered absolute residuals of all data points. 

(2) Choose bandwidth by equation 3.10. Robust k scale estimator (k=0.2) is used to yield a 

coarse initial scale.    

(3) Apply TSSE to to the absolute sorted residuals to estimate the scale of inliers. At the same 

time, the probability density at the local peak )(ˆ peakf and local valley )(ˆ valleyf  are 

obtained by equation (3.1).  

(4) Validate the valley. Let )(ˆ valleyf / )(ˆ peakf = λ (where 1>λ ≥0). Because the inliers are 

assumed having a Gaussian like distribution, the valley is invalid when λ is too large (say, 

0.8). If the valley is valid, go to step (5); otherwise go to step (1). 

(5) Calculate the score, i.e., the objective function of the ASSC estimator. 

(6) Repeat step (1) to step (5) m times (m is set by equation 5.2). Finally, output the 

parameters and the scale S1 with the highest score.  

 

Because the robust k scale estimator is biased for data with multiple structures, the final scale of 

inliers S2 can be refined when the scale S1 obtained by TSSE is used. The results are from one p-

subset, corresponding to the highest score. In order to improve the statistical efficiency, a 

weighted least square procedure ([20], p.202) can be carried out after finding the initial fit. 

Instead of estimating the fit involving the absolute majority in the data set, the ASSC estimator 

finds a fit having a relative majority of the data points. This makes it possible, in practice, for the 

ASSC estimator to obtain a high robustness that can tolerate more than 50% outliers. The 

experiments in the next section show that the ASSC estimator is a very robust estimator for data 

with multiple structures and high percentages of outliers. 

 

6. Experiments for data with multiple structures 

In this section, both 2D and 3D examples are given to illustrate the robustness of the proposed 

method to data including a high percentage of outliers and multiple structures. The results of the 

proposed method are also compared with those of three other popular methods: LMedS, RESC, 

and ALKS.  
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6.1 2D examples 

 

 

 

 

 

 

 

 

   (a)      (b) 

 

 

 

 

 

 

 

   (c)       (d) 

Fig. 5. Comparing the performance of four methods: (a) fitting a line with a total of 90% outliers; 

(b) fitting three lines with a total of 88% outliers; (c) fitting a step with a total of 85% outliers; (d) 

fitting three steps with a total of 89% outliers. 

 

We generated four kinds of data (a line, three lines, a step, and three steps), each with a total of 

500 data points. The signals were corrupted by Gaussian noise with zero mean and standard 

variance σ. Among the 500 data points, α data points were randomly distributed in the range of (0, 

100). The i'th structure has γi data points.  

(a) One line: x:( 0-100), y=x, γ1=50;  α=450; σ=0.8. 
(b) Three lines: x:(25-75), y=75, γ1=60; x:(25-75), y=60, γ2=50; x=25, y:(20-75), γ3=40; 

α=350; σ=1.0. 
(c) One step: x:(0-50), y=35, γ1=75; x:(50-100), y=25, γ2=55; α=370; σ=1.1.  
(d) Three steps: x:(0-25), y=20, γ1=55; x:(25-50), y=40, γ2=30; x:(50-75), y=60, γ3=30; x:(75-

100), y=80, γ4=30; α=355; σ=1.0.  
 

From figure 5, we can see that the proposed ASSC method yields the best results among the four 

comparative methods and correctly fits all four signals. Because LMedS has only a 0.5 breakdown 
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point, it cannot resist the influence of more than 50% outliers. LMedS failed to fit all the four 

signals. Although ALKS can tolerate more than 50% outliers, the experimental results show that 

ALKS is not applicable for the signals with such large percentages of outliers because it failed in 

all four cases. RESC gave better results than LMedS and ALKS. It succeeded in two cases (one-

line and three-line signals) even when the data involved more than 88% outliers. However, RESC 

failed to fit two signals (one step and three steps).  

 

It should be emphasized that both the bandwidth choice and the scale estimation in the proposed 

method are data-driven. No priori knowledge about the bandwidth and the scale is necessary in the 

proposed method. This is a great improvement over the traditional RANSAC method where the 

user set a priori scale-related error bound.  

 

6.2 3D examples 

Two synthetic 3D signals were generated. Each contained 500 data points and three planar 

structures. Each plane contains 100 points corrupted by Gaussian noise with standard variance σ; 

200 points are randomly distributed in a region including all three structures. A planar equation 

can be written as Z=AX+BY+C, and the residual of the point at (Xi, Yi, Zi) is ri=Zi-AXi-BYi-C. 

(A, B, C; σ) are the parameters and scale to estimate.  

In order to extract all planes, (1) we apply the robust estimators to the data set and estimate the 

parameters and scale of a plane; (2) we extract the inliers and remove them from the data set; (3) 

we repeat step 1 to 2 until all planes are extracted. The red circle is the first plane extracted; the 

green star is the second plane extracted; and the blue square is the third extracted plane. The 

results are shown in figure 6, table 1; figure 7 and table 2 (due to the limit of space, the results of 

LMedS, which completely broke down for these 3D data, are only given in table 1 and 2).   

 

From figure 6 and table 1, we can see that RESC and ALKS, which claim to be robust to data with 

more than 50% outliers, fit the first plane approximately correctly. However, because the 

estimated scales for the first plane are totally wrong, these two methods failed to fit the second 

and third planes. Because the LMedS has only a 50% breakdown point, it completely failed to fit 

data with such high contamination — 80% outliers (see table 1). As a comparison, the proposed 

method yielded the best results. It successfully fitted all three planes and correctly estimates the 

scales of the three planes (the extracted three planes by the proposed method are shown in figure 6 

(b)). 
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    (a)            (b) 
 
 
 
 
 
 
 
 
 
 
 
 
          (c)            (d) 
 

Fig. 6. First experiment for 3D multiple-structure data: (a) the 3D data; the results by (b) the 

proposed method; (c) RESC; (d) ALKS. 

 

 Plane A Plane B Plane C 
True values (3.0, 5.0, 0.0; 3.0) (2.0, 3.0, 0.0; 3.0) (2.0, 3.0, 80.0; 3.0) 

ASSC (3.02, 4.86, 1.66; 3.14) (2.09, 2.99, 0.56, 3.18) (1.79, 2.98, 83.25, 3.78) 
RESC (3.69, 5.20, -7.94, 36.94) (4.89, 13.82, -528.06,51.62) and (-2.88,-1.48, 189.65,0.47)
ALKS (2.74, 5.08, 1.63; 44.37) (-7.20, 0.91,198.10; 0.007) and (-0.59,1.82,194.06; 14.34) 
LMedS (1.22, 3.50,30.36, 51.50), (-0.11, -3.98, 142.80; 31.31) and (-9.59, -1.66,251.24;0.0) 

 
                   Table 1. Result comparisons of the four robust estimators for data in figure 6.  
 
Similarly, in the second experiment (figure 7 and table 2), LMedS and ALKS completely broke 

down for the heavily corrupted data with multiple structures. RESC, although it correctly fitted the 

first plane, wrongly estimated the scale the plane. RESC wrongly fitted the second and the third 

planes. Only the proposed method correctly fitted all three planes (figure 7 (b)) and estimated the 

corresponding scale for each plane.  
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   (a)             (b) 
 
 
 
 
 
 
 
 
 
 
 
 
   (c)              (d) 
 

Fig. 7. Second experiment for 3D multiple-structure data: (a) the 3D data; the results by (b) the 

proposed method; (c) RESC; (d) ALKS. 

 

 Plane A Plane B Plane C 
True values (0.0, 3.0, -60.0; 3.0) (0.0, 3.0, 0.0; 3.0) (0.0, 0.0, 40.0; 3.0) 

ASSC (0.00, 2.98, -60.68, 2.11) (0.18, 2.93, 0.18, 3.90) (0.08, 0.03, 38.26; 3.88) 
RESC (0.51, 3.04,-67.29;36.40)   (6.02,-34.00,-197.51;101.1) and (0.35, -3.85, 122.91, 0.02)
ALKS (-1.29, 1.03,14.35; 30.05), (-1.07, -2.07,84.31; 0.01) and (1.85, -11.19, 36.97; 0.08) 
LMedS (0.25, 0.61,24.50, 27.06), (-0.04, -0.19, 92.27; 9.52) and (-0.12, -0.60,92.19; 6.89) 

       
                    Table 2. Result comparisons of the four robust estimators for data in figure 7.  
 

The proposed method is computationally efficient. We perform the proposed method in MATLAB 

code with TSSE in Mex. When m is set as 500, the proposed method takes about 1.5 second for 

the 2D examples and about 2.5 seconds for the 3D examples in an AMD 800MHz personal 

computer. 
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7. Conclusions 

This paper has shown that the scale estimation for data involving multiple structures and high 

percentages of outliers is as yet a relatively unsolved problem and more work in this field is 

required. This provides an important warning to the computer vision community: it is necessary to 

carefully choose a proper scale estimator.  

 

A robust two-step scale estimator (TSSE) is proposed and comparative experiments showing its 

advantages over other existing robust scale estimators are given in this paper. TSSE can be used to 

give an initial scale estimate for robust estimators such as M-estimators, etc. TSSE can also be 

used as an auxiliary estimate of scale (after the parameters of a model to fit have been found) by 

other robust fitting methods such as Hough Transform [13], MDPE [26], etc.  

 

Moreover, we, based on TSSE and RANSAC, propose a very robust Adaptive Scale Sample 

Consensus (ASSC) estimator. The proposed ASSC method considers both the number of data 

points within an error bound and the corresponding scale in its objective function. No priori 

knowledge about the scale of inliers is necessary in the proposed method. The proposed ASSC 

method can output the parameters of a model and the corresponding scale as its results. It is very 

robust to multiple-structural data containing high percentages of outliers. The computational cost 

of the proposed method is also low, which makes it applicable in many computer vision tasks. In 

[28], we will apply the proposed ASSC estimator to a more complicated computer vision task: 

range image segmentation.  
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