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Abstract

3D motion segmentation is the task to cluster corresponding points in multiple (at least
two) images, so that each cluster corresponds to a 3D motion in the underlying 3D scene.
The problem can be divided into two stages: first, all motion models required to describe
the scene have to be found. Second, each correspondence has to be assigned to the correct
model. This report is concerned with the second part. A natural procedure is to assign
each correspondence to a motion, such that the a-posteriori likelihood of the description is
maximized. However, this is not trivial, since the likelihoods of different correspondences
are not independent: neighboring correspondences tend to belong to the same motion, a fact
commonly referred to as “smoothness” or “spatial consistency”. To account for this fact, we
model the set of multiview correspondences as an irregular Markov random field (MRF). The
MRF is then optimized with recent graph-based methods, and individual clique potentials are
inspected for fine-grained outlier detection.

1 Introduction

Motion segmentation is a frequent task in computer vision: a set of image points tracked through
a sequence of images shall be classified such that the motion of the points is consistent within
each class. A consistent motion is defined as one, which satisfies a parametric motion model.
This model can be a simple 2D motion in the image plane, a 3D motion in the scene, or a more
complex motion, such as an articulated model for non-rigid deformations. Motion segmentation
is a chicken-and-egg problem: to estimate the models for all present motions from the data, the
clustering must be known, but to cluster the input data, the motion models are required. The
difficulty can be overcome in different ways, e.g., one can alternate between the two steps in an
EM-type procedure [15]. Another possibility is to allow points to contribute to the estimation of
multiple motions, apply a robust technique, and in a second step assign each point to one of the
motions.

No matter what method is used, at some stage we need a mechanism to assign each point
to one of the recovered motions. This mechanism must take into account the “smoothness”
of the world, i.e., the intuitive notion that the points belonging to the same motion are also
spatially clustered in the image. This fact has been widely acknowledged in the literature on 2D
motion segmentation [14, 9, 5, 17]. Recently, however, several authors have considered motion
segmentation with 3D motion models (or, equivalently, structure-and-motion of dynamic scenes),
and in this context spatial consistency has been largely ignored. Instead, the naive solution is
used to assign each point to the model it fits best based purely on residuals [15, 16].

A standard method to model local interactions in labeling problems is the Markov random
field model. The contribution of this report is to generalize this method, which is widely used in
dense 2D segmentation, to the case of 3D motion segmentation. The set of tracked image points
is represented as a first order Markov random field (MRF), and an optimal segmentation is found
through energy minimization with graph-cuts. It is also shown that the local behavior of the MRF
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can be used to find miss-matches, which cannot be found with other means, since they accidentally
satisfy the constraints of a weak motion model.

For the rest of the paper, we will not be concerned with finding the motion models required
to describe the scene, but will assume, that a set of such models exist, to which we have to assign
the correspondences. We will however include a rejection class, to which those correspondences
are assigned, which with a high probability are incorrectly matched and do not satisfy any of the
models. In section 2 we will briefly recall the Markov random field approach, formulate the task
in terms of an MRF and specify its components.

Section 3 shows experimental results of the proposed method, and section 4 summarizes and
concludes the paper.

2 Markov random fields

2.1 Basics

Markov random fields (MRF) are a probabilistic way of expressing spatially varying priors, in
particular smoothness. They were introduced into computer vision by Geman and Geman [6], and
have been applied to a wide variety of problems such as image restoration [1, 4], stereo matching
and optical flow estimation [4, 10] or higher-level grouping [7, 8]. A Markov random field consists
of a set of sites {p1 . . . pn} and a neighborhood system {N1 . . . Nn}, so that Ni is the set of sites,
which are neighbors of site pi. Each site contains a random variable Ui, which can take different
values ui from a set of labels {l1 . . . lk}. Any labeling U = {U1 = u1 . . . Un = un} is a realization
of the field. The field is a MRF, if and only if each random variable Ui depends only on the site
pi and its neighbors pj ∈ Ni. Each combination of neighbors in a neighborhood system is called a
clique C, and the prior probability of a certain realization of a clique is called the clique potential
VC . The basis of practical MRF modeling is the Hammersley-Clifford Theorem, which states that
the probability of a realization of the field is related to the sum over all clique potentials via
P (U) ∝ exp(−

∑
VC(U)). A standard reference for MRFs in computer vision is [11].

If only cliques of 1 or 2 sites are used, the field is called a first order MRF, and

P (U) ∝ exp

−∑
pi

∑
pj∈Ni

Vij(ui, uj)

 (1)

The 1-site clique for each pi is just the clique itself, with likelihood wi. Each 2-pixel clique consists
of pi and one of its neighbors, and has the likelihood pij = exp(Vij(ui, uj)). Following Bayes’
theorem, the most likely configuration of the field is the one which maximizes the posterior energy
function

E(U) =
∑
pi

∑
pj∈Ni

Vij(ui, uj)−
∑
pi

ln(wi) (2)

It remains to define the clique potentials Vij . If the goal is smoothness, and the set of labels does
not have an inherent ordering, a natural and simple definition is the generalized Potts model [3]

Vij =

{
dij if ui 6= uj

0 else
(3)

If two neighboring sites have the same label, the incurred cost is 0, if they have different labels,
the cost is some value dij , independent of what the labels ui and uj are. In an irregular MRF,
the dij can be some monotonically decreasing function of the distance between the sites pi and pj

in order to model decreasing influence of the neighbors with increasing distance.

2.2 Defining cliques

The neighbors of each site are the sites, which shall influence its labeling. In a dense motion field
the neighborhood system is naturally given by the pixel raster, whereas in an irregular MRF, there
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are different possible definitions. The first and simplest one is to define a points’ neighbors as all
points within a certain radius [11]. However, the definition also has some drawbacks:

• first, it ignores the geometric layout of the neighboring points. At first glance it may seem
reasonable that in areas with high point density each point has more neighbors and their
influence becomes higher. But this also implies that the interaction between two points is
independent of the other points in the region. This contradicts the topological notion of
neighborhood: if on the straight connection between points A and B there is a third point C,
then A and B should interact indirectly via C, rather than have a direct link bypassing C.

• secondly, the problem arises to determine the radius of the neighborhood, which may vary
greatly depending on the density and distribution of correspondences in the image planes.
The problem is aggravated by the fact that in real images the feature density is often highest
close to the border of an independently moving object, where a lot of gradient information
is present.

• thirdly, the distance-induced definition of neighborhood has the effect that the number and
influence of neighbors per point varies greatly, if the points are not evenly distributed in the
image. This makes it difficult to find a global scale for the clique potentials.

Both the theoretical limitations and practical experiments suggest that a topologically motivated
definition of neighborhood is more suitable. The Delaunay triangulation is a standard algorithm
to establish a topology for a 2D point set, which is in a certain sense optimal [12]. A topological
relation is established between the points, so that the set of neighbors is locally adapted to the
point density, and the number of neighbors is distributed more evenly (the average number of
neighbors per point converges to 6 as the number of points N →∞, and is > 5.5 already for very
small meshes).

Motion segmentation requires several (at least two) images, and since parts of the scene are
moving relative to each other, the neighborhood system will not be the same in different images.
The total neighborhood of a correspondence pi thus consists of all points which are neighbors of
pi in any of the images. If a correspondence pj is a neighbor of pi in different images, there is a
clique Cij for each of these images. The local clique potential for a certain realization of pi and its
neighbors pj ∈ Ni is the sum over all Cij in all images, where the same pair {i, j} may contribute
more than once, and with different dij , if seen in more than one image.

2.3 Clique potentials

For 3D motion segmentation, the possible labels are the different motion models, and we have to
assign each correspondence a label. The 1-site clique potential is the likelihood of a correspondence
mi given the motion model Tj . Given a set of motion models in implicit form, Tj(x) = 0, each
with a standard deviation σj , and a set of N correspondences mi, we can compute the residual
for each correspondence in each motion model as ri,(j) = Tj(mi). The likelihood of mi given Tj

under the assumption of normally distributed residuals is

wi,(j) = −
r2
i,(j)

2σ2
j

− 1
2

ln(2πσ2
j ) (4)

For the 2-site clique potentials the generalized Potts model can be applied, as described above.
There are different possible definitions of the dij , and indeed the most successful applications of
MRFs in vision use empirical clique potential functions, e.g. [3]. Obviously, a neighbor’s influence
should decrease with increasing Euclidean distance Eij between corresponding points, so we can
write dij = λf(Eij), where f(x) is a monotonically decreasing function and λ is the parameter
which controls the amount of smoothing. It turns out that the choice of the right function is not
critical. Functions used in our experiments include

• linear decrease f = 1/x
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• quadratic decrease f = 1/x2

• sublinear decrease f = 1/
√

x

• exponential decrease f = exp(−x
a ), 5 < a < 15

• quadratic exponential decrease f = exp(−x2

a ), 50 < a < 250

With an appropriately set λ, any of the given potential functions performs well. As explained
below, we recommend the use of relative distances, so that λ is independent of the point density
and can only has to be determined once. In all given examples, we used the same smoothing
λ = 100.

Unfortunately, directly using the given functions to compute the dij leads to a problem, if the
distribution of the points in the image is uneven, which is the case in most practical applications.
If distances between neighbors differ strongly between different regions of the image, it is no longer
possible to set a meaningful global parameter λ. Low λ will perform satisfactory in dense regions,
but will not have any smoothing effect in sparse regions, while high λ will perform well in sparse
regions, but oversmooth in dense regions. A solution is to use relative distances. The clique
potentials for all neighbors of a point pi are normalized, such that they add up to a constant.
Thus, the total influence of the neighbors on each point’s labeling is the same, while the influence
is distributed among the neighbors according to the potential function.

dij = λ
f(Eij)∑

k∈Ni

f(Eik)
(5)

Note that with relative weights, the clique potentials are no longer symmetric, dij 6= dji.

2.4 Optimization

With the given formulation, finding the most likely segmentation is equivalent to minimizing the
energy functional (2) over the space of realizations F of the MRF. This is a combinatorial problem,
which is NP-hard for >2 labels, but can be exactly solved in low polynomial time for only 2 labels
with the min-cut/max-flow algorithm [2]: the MRF is converted into a graph, where the sites pi are
the nodes, and the cliques Cij are the arcs joining the nodes pi and pj , with cost Vij . Furthermore
the graph is augmented with two terminal nodes for the two labels, which are connected to every
node of the graph with an arc representing the corresponding likelihood wi (plus a constant which
is larger than the maximum possible clique potential for one node). The minimum cut on this
graph partitions it into two sub-graphs, such that each node is only connected to one terminal
(label).

Recent work on multi-way cuts has extended this method to more than two labels [3]. This
method is capable of efficiently finding a strong local minimum through pairwise iteration of
two-label cuts. Although theoretically still dependent on the order, the resulting minima are
“strong” in the sense that the solution cannot be improved by transferring any subset of a class
to another class. A large number of experiments with random starting values show that the result
for our problem is independent of the initial solution, and we believe that in the case of sparse 3D
motion segmentation, with relatively few points and very few labels, the global minimum is usually
found. Independent of the initialization the method needs ≤3 iterations over all labels to converge.
Note that when using relative distances to compute the clique potentials, the potentials are not
symmetric, and thus the graph is directed (whereas it is undirected in the original multi-way cut
formulation). However, the method is still valid, as the underlying min-cut method is valid for
directed graphs.

2.5 Dealing with outliers

In any real application, the set of correspondences will contain outliers, which do not correspond
to images of the same 3D world point. The reason are imperfections of the underlying method to
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Terminal 1
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(b)

Figure 1: Labeling through graph cuts. (a) Graph representing a MRF before segmentation. Line
width denotes edge weight. (b) The result of multi-way cutting.

track points or measure optic displacement. For the segmentation to be correct, these points have
to be filtered out and assigned an own label, the “rejection class”. There are two types of outliers
to be considered: the first are points, which do not satisfy any of the models within reasonable
bounds (e.g., a multiple of the standard deviation σ). Their likelihood is low in all motion models,
and it is trivial to discard them with a threshold on the normalized residual. In most cases this
will already have happened during motion model estimation. However, there is a second class of
points, which are also miss-matches, but do satisfy one of the motion models. This is possible,
because the 3D motion models do not enforce spatial consistency, so a correspondence may fulfill
the constraints of the model while still being incorrect. Such points are quite frequent especially if
only two views are given, because the constraints of some 3D motion models are relatively weak.
In particular, the epipolar constraint only requires a point in the second view to lie anywhere on
the epipolar line defined by the point in the first view.

In many cases, such points nonetheless violate the assumption of spatial consistency. Therefore,
the local properties of the MRF can be used to detect them (assuming that the outliers are
not clustered). The described point will have high likelihood in one motion model, but will be
surrounded by points from different models. Hence, its relative clique potential will be high (say,
Erel > 70%), indicating strong local tension between residual and consistency. With a threshold
on the relative clique-potential of the converged MRF it is thus possible to detect and remove
these points. The threshold is the weighted percentage of neighbors “pulling” the point to other
classes, and as such is scale-independent.

3 Experiments

The proposed 3D motion segmentation method was tested with 2-view motion models on several
different image pairs. Correspondences were found with the KLT-tracker for the “cars” and “shoes”
images, and manually for the “desk” sequence. With a robust multibody structure-and-motion
method, a set of fundamental matrices and homographies was automatically recovered, which best
explains the correspondences. Details can be found in [13]. Outliers, which do not satisfy any
of the recovered motions where removed from the data before segmentation. The labeling was
randomly initialized and the described method was applied. The smoothness parameter was set
to λ = 100 for all experiments. The results are shown in Figure 2.

Using a triangulation to define the neighborhood system has an additional advantage: it is
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(a) motion (b) left (c) right

(d) motion (e) left (f) right

(g) motion (h) left (i) right

Figure 2: 3D motion segmentation results for 3 different image pairs. The left column shows the
image motion overlayed on the first image of the pair. Note that some outliers in the second and
third example have survived the model fitting (shown in green). The center and right columns show
the two images with their respective triangulations superimposed, and the obtained segmentation.
Different colors represent different rigid motions, diamonds are points labeled outliers. See text
for details.
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(a) desk (b) cars (c) shoes (d) shoes

Figure 3: Coarse dense 3D motion segmentation by exploiting the triangulation. See text for
details.

straight-forward to obtain a rough estimate of the dense segmentation. Extending the segmenta-
tion (again, under the assumption of smoothness) amounts to finding the triangles, whose corner
points all fall into the same class, and completely assign them to the class. If the neighborhood
is based on the Euclidean distance and no topology is established, it is not clear how to achieve
the same effect. The results are given in Figure 3. For the “shoes” sequence, the original set
of correspondences is overly sparse, hence the experiment has been repeated with a denser point
cloud, obtained by lowering the threshold of the corner detector.

4 Concluding Remarks

The starting point for this work has been the observation that the smoothness constraint routinely
imposed in 2D segmentation tasks should also be used in 3D motion segmentation. A standard tool
for this task, the Markov random field formulation, has been adapted to the case of segmenting an
irregular set of correspondences, with a different neighborhood system in each image. The method
has been tested on several data sets.
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