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Abstract

Earlier face recognition algorithms have performed sufficiently well under tight en-
vironment constraints. However, simplistic and crude algorithms such as the ge-
ometric feature-based matching method and the template matching method fail
catastrophically under slight environment changes, such as illumination variations.
More sophisticated approaches like the Eigenface method or other Appearance-Based
Methods, which had worked extremely well for face images with considerable changes
in facial expression and occlusions, failed to tackle the issue of lighting changes.
More recently, developments of methods that involve creating generative models of
face images and extracting three-dimensional shape of faces have shown promising
results. This report shall attempt to provide a detailed account of the Illumination
Cones method that has shown a vast accuracy improvement compared to earlier
methods in terms of robustness against illumination variation.

Keywords: Face recognition, lighting variation, Illumination Cones method.

1 Introduction

A well known face and often quoted statement in face recognition literature is ’the vari-
ation between the images of the same face due to illumination and viewing direction are
almost always larger than images variations due to change in face identity [1]’. This con-
dition severely compounds the difficulty of creating automatic face recognition algorithms
that are robust across images corrupted by arbitrary lighting changes. As an illustration,
Figure 1 shows a face being subjected to an increasing degree of illumination variations.
The human visual system is still capable of recognizing the same face from all images,
but most face recognition algorithms would already be impractical for usage in the second
image.

∗Tat-Jun Chin was a holder of the Australia-Asia Awards conferred by the Department of Education,
Science and Training (DEST) of the Government of Australia since Feb 2004.
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Figure 1: Illumination changes across the same face.

Contemporary research into face recognition algorithms that are robust against illu-
mination variations usually adopted one of the following methods: either extract and
measure some property in the face images which are invariant or at least insensitive to
illumination changes; or model the three-dimensional face object in order to predict the
variability of the images under changing illumination conditions [9].

Early face recognition algorithms, such as geometric feature-based matching meth-
ods [13, 20, 21] and template matching methods [13, 25] were just concerned with produc-
ing workable face recognition systems, and efforts were not concentrated towards incor-
porating robustness against illumination variations. Moreover, accuracy of such methods
hinges greatly on the effectiveness of the feature extraction and measurement stage, and
existing pre-processing techniques are still not reliable enough [14]. An example of such
methods is the usage of edge maps as representations of face images. By looking at
Figure 2, which is a series of images of the same face illumination under almost similar
lighting configurations and their corresponding edge maps, we can deduce that a crude
face recognition algorithm can be constructed by using the edge maps as templates for
identity matching.

However, if the same face is subjected to a larger degree of illumination variations,
illustrated by Figure 3, we can see that a straightforward template matching of the edge
maps is not even remotely possible to be used as a face recognition algorithm. This
suggests that simple image cues such as edges do not contain sufficient information [8],
and are too susceptible to illumination variability, to be used to perform recognition under
practical situations.

The Eigenface approach [24], being one of the first genuinely workable face recognition
algorithm, was capable of accounting for facial expression variations and additions of
minor occlusions, but fell short of being unaffected by lighting changes. The cornerstone of
the Eigenface method was the utilization of the Principal Component Analysis (PCA) [22]
to perform dimensionality reduction of face images from their huge image space to a
much smaller subspace that maximizes the variations among face images of different
identities. Later algorithms were also developed in similar spirit to the Eigenface approach
in that they consider face images holistically and dimensionality reduction schemes were
employed to obtain low-dimensional representations of face images. These are categorized
as Appearance-Based Methods (ABMs).
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Figure 2: Edge Maps: Minor Illumination Changes.

The ABMs can be extended to take into account face images under illumination vari-
ations, provided that such images have been recorded under similar illumination condi-
tions [11]. This prerequisite is the major drawback of the ABMs [7], as the task of creating
a training set that incorporates face images seen under every possible illumination con-
figuration is hardly achievable.

Yet, the modest success of some of the ABMs triggered a plethora of research work
that attempt to characterize the subspace that attempt to characterize the subspace that
encompasses images of a face subjected under all possible illumination configurations.
Research results such as those published in [3, 4, 8, 15, 16] concluded empirically and
theoretically that the images concentrate in a low-dimensional subspace, provided certain
assumptions, such as face surfaces being purely Lambertian and face shapes being convex,
are enforced. These developments paved the way for research into the underlying genera-
tive structure of a face image that can be extrapolated to create novel images under every
possible illumination condition, without the face object having being viewed under such
conditions.

The Illumination Cones method, first surfaced in [9], is strictly an appearance-based
method for recognizing faces under extreme variability in illumination. It differs sub-
stantially from other ABMs in that a small number of images of each face under slight
illumination changes are used to generate a representation, termed the Illumination Cone,
of all images of the face under every possible illumination configuration. Results using Il-
lumination Cones for face recognition across considerable illumination variation published
in [6, 7] have shown promising results.

This technical report is organized as follows: Section 2 will describe in detail the Illu-
mination Cones method, including the basics from the viewpoint of physics-based vision,
construction of the cones representation and other issues pertaining to the construction of
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Figure 3: Edge Maps: Major Illumination Changes.

them. Section 3 will explain the setup of our experiment used to gauging the performance
of this method and the results obtained. Finally, the conclusion is presented in Section 4.

2 The Illumination Cones Method

The Illumination Cones method is based on the theory of Photometric Stereo. This theory
attempts to recover depth information by examining shading of two or more images of
an object subjected to different illumination conditions. There are two main simplifying
assumptions in order for Photometric Stereo to be valid for our applications: the surface
of the face has Lambertian(diffuse) reflectance properties; and the shape of the face is
convex.

A surface that has pure Lambertian reflectance properties appears equally bright (hav-
ing the same shading pattern) from all viewing directions for a fixed lighting configura-
tion. This behaviour is dictated by Lambert’s cosine law, which says that the perceived
brightness of a diffuse surface patch illuminated by a point light source varies with the
incident angle (direction of light source) relative to the surface normal of the patch. It is
summarized by the following equation:

L (θe, φe) =
I

π
cos (θs) , (1)

where L (θe, φe) is the perceived brightness from the viewing angle determined by the
polar coordinate values (θe, φe), I is the intensity of the incident light source, and θs is
the angular difference between the vector representing incident radiation and the normal
of the surface patch. More detailed discussion of the surface reflectance properties can be
found in [19].
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Another factor that affects the observed brightness of a surface patch is the radiometric
property of the albedo(whiteness) factor. This effect causes only a fraction of incident light
to be radiated from a surface patch. Thus, the perceived brightness of a surface patch
can be more precisely stated as

L (θe, φe) = ρ
I

π
cos (θs) , (2)

where ρ is the albedo factor and 0 ≤ ρ ≤ 1.

By relating that the cosine of the angular difference between two vectors is equals
to the inner product of the unit vector of the two vectors, the normalized intensity of a
pixel in an image coordinate (x, y) corresponding to it’s own actual surface patch can be
written as

I (x, y) = a (x, y)n (x, y) · s ≡ b (x, y) · s, (3)

where a (x, y) is the albedo, n (x, y) is the surface normal, b (x, y) ≡ a (x, y)n (x, y) and
s is the light source direction (the light is assumed to be at infinity).

2.1 Fundamentals of the Illumination Cone

With the above treatment, let x denote an image with n pixels. Let B denote a matrix
of dimension n × 3 ( i.e. B ∈ Rn×3) where each row of B is the product of the albedo
with the unit normal at a particular pixel, and s ∈ R3 be a column vector representing
the product of the light source strength with the unit vector of the light source direction.
Thus, we can write

x = Bs. (4)

Since it is not possible for images to register negative values, we have to zero all the
negative components of the answer. Hence,

x = max (Bs,0) . (5)

Take note that the negative components correspond to the surface points under shadows
and are called attached shadows. Furthermore, since we assumed that the face shape is
convex, we have avoided taking into account cast shadows, i.e. shadows that the object
casts on itself.

If the face is illuminated by more than one light source, the resulting image x would
be the superposition of the images illuminated separately by the individual light sources,
i.e.

x =
k∑

i=1

max (Bsi,0) , (6)

where k is the total number of the individual point light sources.

If the matrix B ∈ Rn×3 is fixed and the light source matrix s ∈ R3 is allowed to
permute, the set Bs is the range of the matrix B. Furthermore, this set is a subspace of
the n-dimensional image space, with the notation

L = {x |x = Bs,∀s ∈ R3 }. (7)
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L is termed the illumination subspace by [9]. From linear algebra, we can see that the
dimension of L equals the rank of B. If B has full rank, L is 3-dimensional, and it is gen-
erally assumed to be so because a face will surely have more than 2 linearly-independent
surface normals.

It was proposed in [9] that the total number of unique images obtained by subjecting
a fixed-posed object to every possible illumination configuration equals to m (m− 1) + 2,
where m is the number of distinct surface normals of the object. Therefore, the set L
would contain at most n (n− 1) + 2 images, where n is the number of pixels in the face
image. We can construct the set L as a union of extreme rays, with the definition of an
extreme ray as

xij = max (Bsij,0) , (8)

where
sij = bi × bj (9)

and both bi and bj corresponding to rows of B.

Consequently, we can construct the set C, which comprises all images of a hypotheti-
cally convex and Lambertian face under all possible illumination configuration, by varying
the direction and strength of an arbitrary number of point light sources at infinity, i.e.

C = {x |x =
k∑

i=1

max (Bsi, 0) , ∀si ∈ R3, ∀k ∈ Z+ }. (10)

C is termed the illumination cone by [9], and was proven to be a convex cone in Rn.

2.2 Constructing the Illumination Cone

The illumination cone C is completely determined by the illumination subspace L. If
both matrices B and s are known, L can be determined uniquely. If only s is known,
the problem is similar to classical photometric stereo, and least squares approximation
can be used to obtain B with the light source information and face images as inputs [5].
However, for the task of building representations of faces from training images, we will
almost always not have a priori knowledge of the light-source directions or intensities.
Therefore, we need a means of estimating both B and s from our training images.

To this end, Hayakawa proposed the use of the Singular-Value Decomposition (SVD)
to estimate the B and s matrices [17]. An ensemble that contains at least three images of
a fixed-posed face subjected to different but unknown point light sources is first obtained.
Ideally, each point on the images must be illuminated in at least three of the images in the
ensemble. These images are then converted into their vector representations, normalized
and concatenated to form the image data matrix,

I = [ x1 x2 ... xm ] , (11)

where xi ∈ Rn represents normalized image i and m is the number of images in the
ensemble. By invoking the SVD, the image data matrix can be decomposed into

I = UΣV T , (12)
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where U ∈ Rn×n, Σ ∈ Rn×m and V ∈ Rm×m contain the left singular vectors, singular
values and right singular vectors, respectively. The matrix Σ is a diagonal matrix with
the non-zero values as the singular values ordered decreasingly. Theoretically, only the
first three singular values are significant, therefore a minimum of only three images are
needed in this method.

By taking into account only the first three singular values, we are actually finding
the best rank-3 approximation of the image data matrix. The matrices B and s can be
approximated as

B = U (1 : n, 1 : 3) · [Σ (1 : 3, 1 : 3)]1/2 , (13)

s = [Σ (1 : 3, 1 : 3)]1/2 · [V (1 : m, 1 : 3)]T . (14)

However, ambiguities exist in the SVD results. With a decomposition such as I = Bs, for
any arbitrary invertible 3× 3 linear transformation A ∈ GL (3), every

I = Bs = (BA)
(
A−1s

)
(15)

is a valid decomposition of the image data matrix as well. Therefore, without the light
source information, we can only recover B up a 3×3 linear transformation A ∈ GL (3) [17,
5]. The next section shall attempt to explain and deal with this ambiguity.

2.3 The Bas-Relief Ambiguity

A generalized bas-relief (GBR) transformation changes both the surface shape and albedo
pattern. Let (x, y) denote a coordinate point in an image plane, z = f (x, y) denote the dis-
tance from an object’s surface to the image plane, and a (x, y) denote the albedo pattern,
GBR transformation of the object’s surface and albedo pattern are defined respectively
as

f̄ (x, y) = λf (x, y) + µx + νy, (16)

ā =
a

λ

(
(λfx + µ)2 + (λfy + ν)2 + 1

f 2
x + f 2

y + 1

)1/2

, (17)

with λ > 0, and fx and fy denote partial differentiation of f (x, y) against x and y
respectively. When 0 < λ < 1 and µ = ν = 0, the transformed surface is equivalent to
relief sculptures or so-called “flattened forms” created by artisans since antiquity. These
relief sculptures are indistinguishable from their original untransformed versions when
viewed from a particular vantage point. Figure 4 provides an example.

In order to view the bas-relief transformation as a linear operator, let p = (x, y, f (x, y))
and p̄ =

(
x, y, f̄ (x, y)

)
denote the coordinate point (according to the image frame) of the

surface of the original and transformed object respectively. Therefore,

p̄T = GpT , (18)

with G =

 1 0 0
0 1 0
µ ν λ

 . (19)
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Figure 4: Frontal and side view of a relief sculpture. Notice that when viewed frontally,
it appears that the sculpture has full 3-D depth. Image taken from [10].

The inward pointing surface normal for a surface point p = (x, y, f (x, y)) can be written
as

n (x, y) =

 −fx

−fy

1

 . (20)

The following relation exists as well for surface normals of an object and the surface
normals for it’s GBR-transformed version:

n̄ = G−Tn, (21)

with G−1 =
1

λ

 λ 0 0
0 λ 0
−µ −ν 1

 , (22)

and G−T =
(
G−1

)T
. (23)

Several significant observations of this subject matter and their implications towards
computer vision, especially in the field of 3-d reconstruction through photometric stereo,
were outlined in [10]. Assuming that both an object and it’s GBR transformation are
viewed frontally, it was observed that

1. The set of cast and attached shadows produced by a surface and it’s GBR transfor-
mation are identical, irrespective of the surface reflectance properties.

2. If the material of the object can be modeled as having Lambertian reflectance prop-
erties (one of the main assumptions of the Illumination Cones method), then the
set of possible images including shadowing under any lighting condition for an ob-
ject and a GBR-transformed version of the object are identical i.e. they have the
same illumination cones (it should be noted that a GBR transformation alters both
surface geometry and albedo). Hence, these objects cannot be discriminated by any
recognition algorithm that uses images as inputs.

3. The generalized bas-relief transformation is the only transformation which has these
first two properties.

4. For photometric stereo where the light source directions are unknown, the structure
can only be determined up to a GBR transformation, and shadows do not provide
further information.
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See [10] for proofs of these statements.

2.4 The Integrability Constraint

Reiterating the result in Equation 15, the surface normal matrix recovered from the SVD
technique differs from the actual surface normal matrix by a 3× 3 linear transformation.
Let B∗ be the actual surface normal matrix, B be our estimation, and P ∈ GL (3) be the
linear transformation, we can write

B∗ = BP. (24)

For any function z = f (x, y) to correspond to a consistent surface, it must satisfy an
integrability condition denoted by the following equation [12]:

fxy = fyx, (25)

where the subscripts denote partial derivatives. This in turn suggests that for every row
of B∗ which is denoted by b∗ (x, y) = [ b∗1 b∗2 b∗3 ], the following condition holds:(

b∗1
b∗3

)
y

=

(
b∗2
b∗3

)
x

. (26)

It was claimed in [10] that the GBR-transform is the only linear transformation that
preserves the integrability in a set of transformed surface normals that was found to have
satisfied the integrability condition pre-transformation. That is to say that in an operation
such as

b̄ (x, y)T = Mb (x, y)T , (27)

where both b (x, y) and b̄ (x, y) correspond to surface normals, if both b (x, y) and b̄ (x, y)
satisfy the integrability condition as in Equation 26, the only valid linear transformation
denoted by M must be in the form specified by Equations 22 and 23. See [10] for proof
of this proposition.

As a corollary, we can see that the result b̄ from the GBR-transformation of the vector
b would be

b̄T =

 b1 − b3
µ
λ

b2 − b3
ν
λ

b3
1
λ

 . (28)

If Equation 26 holds for b, then the following equation(
b1 − b3

µ
λ

b3
1
λ

)
y

=

(
b2 − b3

ν
λ

b3
1
λ

)
x

(29)

holds for b̄ as well.

To present the linear transformation in the form of Equation 31, Equation 30 can be
written as

b̄ (x, y) = b (x, y)MT . (30)
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To satisfy the integrability condition for both sides of the equation, M was constrained
to be in the form of G−T . Therefore, in order to preserve integrability, we have to impose
the following constraint:

B∗ = BP, P ∈ (GBR)−1 . (31)

Take note that since B and (BA) in Equation 15 correspond to face surfaces, we have
imposed a constraint on the possible form of A, though the ambiguity has not been re-
solved completely. However, as far as producing images under the Lambertian assumption
is concerned, since B and (BA) differ from a GBR-transform only as a consequence of
the constraint, they have identical Illumination Cones.

2.5 Enforcing Integrability

Using SVD to decompose the image data matrix I guarantees that we have the best
3-dimensional basis based on the ranking of the singular values. However, it is not guar-
anteed that the estimated surface normal matrix B can be used to form a consistent
surface. In order to apply the integrability constraint developed in the last section on the
ambiguous 3 × 3 linear transformation of the SVD results, we have to ensure that every
row of matrix B satisfies the integrability constraint.

Since there were no means of enforcing integrability during the estimation of B, it has
to be enforced afterwards. A method similar in concept to the ones published in [6, 5, 23]
was developed to achieve this. Let T denote the following transformation:

B
T−→ B∗ (32)

where B is our estimation and B∗ is the surface normal matrix that satisfies the integra-
bility constraint. The operator T is obviously a 3× 3 linear transformation, hence

B∗ = BT. (33)

Let b = [ b1 b2 b3 ] be one row of B and T1, T2 and T3 be the 3 columns of T, then the
corresponding row of B∗ is

b∗ =
[

b∗1 b∗2 b∗3
]

=
[

bT1 bT2 bT3

]
. (34)

Since B∗, as a surface normal matrix, satisfies the integrability condition, the following
condition must hold true: (

bT1

bT3

)
y

=

(
bT2

bT3

)
x

. (35)

Expanding this out, we get

(bT3) (byT1)− (bT1) (byT3) = (bT3) (bxT2)− (bT2) (bxT3) , (36)

which can be expressed concisely as

bS1b
T
y − bS2b

T
x = 0, (37)
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where S1 = T3T
T
1 −T1T

T
3 and S2 = T3T

T
2 −T2T

T
3 . We can see that both S1 and S2 are

skew-symmetric matrices of the form

S1 =

 0 s11 s12

−s11 0 s13

−s12 −s13 0

 and S2 =

 0 s21 s22

−s21 0 s23

−s22 −s23 0

 , (38)

with three degrees of freedom each. Equation 38 can be expanded for every row of B,
and with discrete approximations of the partial derivatives, we will arrive at an over-
constrained homogeneous system of linear equations

As = 0, (39)

where s contains all the elements of S1 and S2. This can be easily solved using SVD.

Furthermore, the elements of S1 and S2 are cofactors of the matrix T. Therefore, we
can solve for matrix T by virtue of the following relation:

k

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 =

 ∆11 ∆21 ∆31

∆12 ∆22 ∆32

∆13 ∆23 ∆33

−1

, (40)

where ∆11 = T22T33−T23T32, etc. and k is a normalization constant. Notice that since S1

and S2 contain only six of the total number of cofactors of the matrix T, i.e. ∆11, ∆12, ∆21,
∆22, ∆31 and ∆32, the remaining three cofactors, i.e. ∆13, ∆23 and ∆33 are still unknown.
However, according to [23], the unknown cofactors correspond to the parameters λ, α
and β of the generalized bas-relief transformation, and they can be selected arbitrarily in
order to solve for T.

2.6 Accounting for Shadows, Specularities and Saturations

From section 2.2, it was proposed that the image data matrix I be constructed by the
concatenation of at least three face images that were created by subjecting the face to
different but unknown point light sources. Furthermore, each point in the images used
must be illuminated in at least three of the images in the ensemble. The images used
must contain as little shadowing as possible.

However, it is clear that this might not be achievable. Even if an object has surface nor-
mals covering the Gauss sphere (a convex object), there is only one light source direction-
the viewing direction- such as the entire visible surface is illuminated [9]. Inevitably,
shadows are always present in the face images, and they will cause biased estimation of
the surface normal matrix.

Saturations in the images, although having different causes than shadows, have the
same effect of biasing the estimation of the surface normals. Both shadows (0 greylevel
value) and saturations (maximum greylevel value) provide lower and upper limits of image
intensities. These imaging shortcomings provide a constraint on the range of the surface
normal matrix, and should be accounted for in the process of estimating surface normals.
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A face surface is not perfectly Lambertian, therefore specular points will always be
present in the face images. Sources of specularities might include the eyeballs, eyebrows
and oily skin surfaces. These specular points can be considered as outliers in the Lam-
bertian model assumed for the face surfaces, and they will cause biased estimation of the
surface normals as well.

Instead of invoking a straightforward SVD to arrive at an estimation of the surface
normals, an iterative method similar to the one which appeared in [6] is implemented.
Their method was influenced by [18]. First of all, pixels or elements in the image date
matrix I that correspond to shadows and saturations are first detected by thresholding.
The rows of I that contain at least one of these bad pixels are sifted out, forming a
sub-matrix Ĩ.

The SVD is performed on Ĩ and an initial estimate of the light source matrix s̃ is
obtained. Take note that although Ĩ ∈ Rñ×m, where ñ < n, estimates for s̃ would still
be in R3×m. Each row of the matrix B̃ is then estimated using least squares with the
original image data matrix I as the response variables and the initial s̃ as the explanatory
variables. By using the new estimate of B̃, a new s̃ is estimated, again, using least squares.
The previous two steps are iterated until the estimates converge.

During the iterative procedures of the method, the least squares fit is used to estimate
the linear model

[
i1 i2 ... im

]
=
[

b1 b2 b3

]  s11 s21 ... sm1

s12 s22 ... sm2

s13 s23 ... sm3

 , (41)

with elements of b and s exchanging roles as the explanatory variables. Though pixels
that do not conform to the Lambertian linear model were excluded during the initial
estimation of s̃, elements in the image data matrix that correspond to these pixels can
still influence the results during the iterative stages. An overwhelming presence of outliers
can cause invalid results especially when a linear fitting algorithm with low breakdown
percentage, such as least squares, is used.

Outlier influences can be mitigated by using robust fitting algorithms with high break-
down points such as the least median squares, but it is still crucial to select good training
images. However, acquiring an ensemble of face images with all pixels illuminated in
at least three of the images is no easy feat, especially when considering parts like the
nostrils and nose edges, and furthermore, areas like eyeballs and eyebrows are simply
non-Lambertian. At first glance, it might be wiser to use as many training images as
possible to construct the image data matrix so that all pixels can be illuminated at least
three times, but this will only risk corrupting the data with a high percentage of out-
liers. Nonetheless, results obtained by implementing the above estimation method are
still adequately accurate for face recognition.
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2.7 Recognition

With the estimate of the facial surface matrix B at hand, given a test image x, recognition
using the Illumination Cones is performed by computing the distance of x to the cones of
each face image in database. Obviously x is matched to the face which has the shortest
cone distance. However, computation speed of the distance measure might be prohibitively
slow especially when the correspond to huge subspaces.

To speed up the recognition process, dimensionality reduction is performed on the
cones. In [6], it was suggested that the collection of all images in the cones are projected
down to a 100-dimensional feature space using Principal Components Analysis. A test
image x is recognized by first projecting it down to the 100-dimensional feature space and
then nearest neighbour classification is performed.

An alternative approach is to use the Illumination Subspace, L, directly. To perform
recognition, the distance of a test image to L is computed by finding the distance of x to
the linear subspace spanned by the three-dimensional basis defined by the estimated B
matrix. This can be computed by the following equation [2]:

distLx = ‖x− projLx‖ , (42)

where projLx = B
(
BTB

)−1
BTx. (43)

Due to it’s simplicity and decent robustness against illumination variation, this approach
was used in the recognition stage of our experiment.

3 Experimental Results

Face images from the Yale Face Database B [7] have been used to test the methods
described previously. Subjects in the database have been exposed to systematically varied
light sources while maintaining a fixed posed relative to the camera. Specifically for our
experiment, face images of 14 subjects (Subject 3 till Subject 16) were used. The different
lighting configurations were sampled in 15◦ increments in spherical angles. Five subsets
were grouped to quantify the effect of illumination variation. Subset 1 (and respectively
Subsets 2, 3, 4 and 5) contains images for which both the longitudinal and latitudinal
angles of light source direction are within 15◦ (and respectively 30◦, 45◦, 60◦, and 75◦) of
the camera axis.

The training ensemble consists of 7 images of Subject 3 in Subset 1. As described
earlier, they are face images obtained from different illumination conditions but contain
the least amount of lighting variations among them, refer Figure 5. These images were
fed to the system and a surface normal matrix, B, was obtained as a result of the train-
ing procedure. After this stage, novel images of the training face image under unseen
before lighting configurations can be created. By using randomly generated light source
directions (one at a time), the resulting novel images correspond to the elements in the
Illumination Subspace of the face. See Figure 6 for examples.
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Figure 5: The training set: Subject 3 of Yale Face Database B.

Figure 6: Novel images under unseen before illumination conditions generated from the
surface normal matrix.

As a comparison of the robustness of the Illumination Cones against lighting varia-
tions, the face image database were trained using the Eigenface approach as well. The
training set consisted of one face image of each subject with all of them taken from Sub-
set 1. Ten most significant Eigenfaces were saved as the result of this training procedure.

Training results from both methods were run through all face images available in all
the subsets. Appropriate distance thresholds were used to determine whether a test image
was close enough to the training set to be considered a positive match. The results in
terms of error rates of both methods are summarized in Table 1 and in Figure 7.

Table 1: Error rates of both face recognition methods.
Error Rate (%)

Method Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
Eigenface 8.16 50.6 86.23 91 98.49
Illumination Cones/Linear Subspace 1 2.38 7.25 10.2 22.66
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Figure 7: Error rates of both face recognition methods.

4 Conclusion

A summary of the procedures used above is presented here:

1. Construct the image data matrix I using face images of fixed posed but different
illumination condition.

2. Estimate an initial facial surface normal matrix B using SVD coupled with the iter-
ative procedure described in Section 2.6 to take non-Lambertian pixels into account.

3. Enforce integrability of the B matrix using the method described in Section 2.5.

4. Perform recognition using the Linear Subspace method described in Section 2.7.

The results show that the Illumination Cones method outperforms the Eigenface
method in all subsets of illumination changes. While the Eigenface method breaks down
even with only minimal variations in Subset 2, the Illumination Cones method provides
decent results from Subset 2 till Subset 4, before breaking down eventually in Subset 5.
Though this is a big leap in improvement, the method sill falls far short of matching the
capability of the human visual system in face recognition. This has presented challenges
and future work in the this active research area.
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