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Abstract

In the present paper we describe a new formulation for Support Vector regression (SVR), namely monomialν-SVR. Like
the standardν-SVR, the monomialν-SVR method automatically adjusts the radius of insensitivity (the tube width,ǫ) to suit the
training data. However, by replacing Vapnik’sǫ-insensitive cost with a more general monomialǫ-insensitive cost (and likewise
replacing the linear tube shrinking term with a monomial tube shrinking term),the performance of the monomialν-SVR is
improved for data corrupted by a wider range of noise distributions. We focus on the quadric form of monomialν-SVR and
show that the dual form of this is simpler than the standardν-SVR. We show that, like Suykens’ Least-Squares SVR (LS-SVR)
method (and unlike standardν-SVR), the quadricν-SVR dual has a unique global solution. Comparisons are made betweenthe
asymptotic efficiency of our method and that of standardν-SVR and LS-SVR which demonstrate the superiority of our method
for the special case of higher order polynomial noise. These theoretical predictions are validated using experimental comparisons
with the alternative approaches of standardν-SVR, LS-SVR and weighted LS-SVR.

I. I NTRODUCTION

Support Vector regressors (SVRs) [1] [2] [3] are a class of non-linear regressors inspired by Vapnik’s SV methods for
pattern classification [4] [5]. Like Vapnik’s method, SVRs first implicitly map all data into a (usually) higher dimensional
feature space. In this feature space, the SVR attempts to construct a linear function of position that mimics the relationship
between input (position in feature space) and output observed in the training data by minimising a measure of the empirical
risk. To prevent overfitting a regularisation term is included to bias the result toward functions with smaller gradientin feature
space.

Two major advantages that SVRs have over competing methods (unregularised least-squares methods, for example) are
sparseness and simplicity [3] [6]. SVRs are able to give accurate results based only on a sparse subset of the complete training
set, making them ideal for problems with large training sets. Moreover, such results are achievable without excessive algorithmic
complexity, and use of the kernel “trick” makes the dual formof the SVR problem particularly simple.

Roughly speaking, SVR methods may be broken intoǫ-SVR [1] [2] and ν-SVR methods [7] [8], both of which require
a-priori selection of certain parameters. Of particular interest is theǫ (or ν in ν-SVR methods) parameter, which controls
the sensitivity of the SVR to presence of noise in the training data. In both cases, this parameter controls the thresholdǫ

(directly for ǫ-SVR, indirectly forν-SVR) of insensitivity of the cost function to noise throughuse of Vapnik’sǫ-insensitive
loss function.

The standardǫ-SVR approach is associated with a simple dual problem, but unfortunately selection ofǫ requires knowledge
of the noise present in the training data (and its variance inparticular) which may not be available [9]. Conversely, thestandard
ν-SVR method has a more complex dual form, but has the advantage that selection ofν requires less knowledge of the noise
process [9] (only the form of the noise is required, not the variance). Thus both forms have certain difficulties associated with
them.

Yet another approach is that of Suykens’ LS-SVR [10], which uses the normal least-squares cost function with an added
regularisation term inspired by Vapnik’s original SV method. The two main advantages of this approach are the simplicity
of the resulting dual cost function, which is even simpler than ǫ-SVR; and having one less constant to choose a-priori. The
disadvantages include loss of sparsity and robustness in the solution. These problems may be ameliorated somewhat through
use of a weighted LS-SVR scheme [11]. However, while this method is noticeably superior when extreme outliers are present in
the training data, in our experience the performance of the weighted LS-SVR may not be significantly better than the standard
LS-SVR if such outliers are not present.

In view of the shortcomings of these approaches, we present amodification of Smola’sν-SVR method (monomialν-SVR).
Our approach retains the feature thatν may be selected without knowledge of the variance of the noise present in the training
data. For the special case of quadricν-SVR (second order monomialν-SVR [12]), the associated dual optimisation problem
is simpler than the standardν-SVR method. Furthermore, we show that quadricν-SVR method is able to out-perform both
standardν-SVR and LS-SVR (weighted or otherwise) in several cases (for example in the presence of higher order polynomial
noise).

We begin in section II by reviewing the standardǫ-SVR method and its properties. Next, using the theory of maximum-
likelihood estimation as motivation, we present a modification of this method using a new monomialǫ-insensitive cost function
(monomialǫ-SVR). Concentrating on the quadric form of this new cost function, we form the dual and show that it is no more
complex than the standardǫ-SVR dual. In subsection II-C we consider the asymptotic efficiency of our method in comparison
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to the standardǫ-SVR and LS-SVR. We also address the issue of selectingǫ to maximise this efficiency. Finally, in subsection
II-D, we analyze the sparsity of the various methods.

In section III we further explore the properties of the standardν-SVR method, and in particular its property of insensitivity to
the variance of noise present in the training data. We then apply the obvious extension of this approach to the monomialǫ-SVR
formulation introduced previously to produce a monomialν-SVR method, and show that the dual form of the quadricν-SVR
is actually less complex than the dual form of the standardν-SVR. We then consider the problem of optimalν selection for
both our method and standardν-SVR, and show that the property of noise variance insensitivity when selecting this constant
carries over from the standardν-SVR to monomialν-SVR. Finally, in subsection III-C, we consider the issue ofsparsity for
the standardν-SVR, monomialν-SVR and LS-SVR methodologies.

In order to gain a better “feel” for the problem, in section IVwe consider the particular case of training data affected by
polynomial noise of degree1 ≤ p ≤ 6. In particular, we compare the theoretical efficiencies andthe optimal values ofǫ
andν for our method against other approaches. Finally, in section V, we consider a model problem where various orders of
polynomial noise are added to the training data, and comparethe results achieved here with our theoretical predictions. We
show that the results fit the prediction within tolerable accuracy. Moreover, we show that the predictions for the parameter ν
provide a worthwhile “first guess” of the actual optimal value.

II. ǫ-SV REGRESSION

The regression problem may be formulated as follows. Given atraining set:

Θ = {(x1, z1) , (x2, z2) , . . . , (xN , zN )}
xi ∈ ℜdL

zi ∈ ℜ

wherezi = ĝ (xi) + noise for someĝ : ℜdL → ℜ; andxi is drawn i.i.d. manner from an unknown distribution, construct an
approximationg : ℜdL → ℜ of ĝ. An approximationg constructed for a given training setΘ is called a trained machine, and
the construction process training. We assume that all noisesources (eg. measurement noise, system noise etc.) are smooth,
i.i.d and zero mean.

In the SV approach [1], it is usual to define (implicitly, as will be seen later) a set of functionsϕj : ℜdL → ℜ,
1 ≤ j ≤ dH , which collectively form a map from input space to feature space, ϕ : ℜdL → ℜdH , where ϕ (x) =
(ϕ1 (x) , ϕ2 (x) , . . . , ϕdH

(x)). Using this map, the trained machine is defined to be:

g (x) = wT ϕ (x) + b

which is a linear function of position in feature space. In the ǫ-SVR framework,w andb are selected to minimise the regularised
risk functional:

R1 (w, b) = 1
2w

T w + C
N

∑

(xi,zi)∈Θ

|g (xi) − zi|ǫ (1)

where | . |ǫ = max (| . | − ǫ, 0) is Vapnik’s ǫ-insensitive loss function (ǫ ≥ 0 is a constant). In this expression, the first term
( 1
2w

T w) characterises thecomplexityof the model1 while the second term is a measure of empirical risk associated with the
training set when this model is applied. The constantC > 0 controls the trade-off between empirical risk minimisation (and
potential overfitting) ifC is large and complexity minimisation (and potential underfitting) if C is small.

An important property of (1) is that errors of magnitude lessthanǫ do not contribute to the cost,R1 (w, b). Assumingǫ is
well matched to the noise present in the training data (an issue we will return to shortly), this should lend a degree of noise
insensitivity to the cost function [1].

For convenience, (1) is usually expressed in terms of non-negative slack variablesξ, ξ∗. Using this notation, the primal
form of the ǫ-SVR training problem is:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) = 1
2w

T w + C
N

N
∑

i=1

(ξi + ξ∗i )

such that:
(

wT ϕ (xi) + b
)

≥ zi − ǫ− ξi
−

(

wT ϕ (xi) + b
)

≥ −zi − ǫ− ξ∗i
ξ, ξ∗ ≥ 0

(2)

For reasons of mathematical tractability, it is usual to deal with the dual of (2), which may be constructed as follows.
For each of the inequality constraints in (2) we associate a non-negative Lagrange-multiplier, respectivelyαi, α∗

i , γi andγ∗i
(1 ≤ i ≤ N ), noting that this gives a 1-1 correspondence between the training pair(xi, zi) and the Lagrange multipliersαi

1the larger1
2
w

T
w, the larger the gradient ofg (x) in feature space, and hence the moreg (x) may vary for a given variation in input,x
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andα∗
i for all 1 ≤ i ≤ N , and furthermore that at least one ofαi andα∗

i will be zero for all 1 ≤ i ≤ N . Using the usual
techniques it is straightforward to show that the dual form of (2) is:

min
α,α∗

L1 (α,α∗) = 1
2 (α − α∗)

T
G (α − α∗)−

(α − α∗)
T

z + ǫ (α + α∗)
T

1

such that: 0 ≤ α ≤ C
N

1

0 ≤ α∗ ≤ C
N

1

1T (α − α∗) = 0

(3)

where Gi,j = K (xi,xj) = ϕ (xi)
T

ϕ (xj), andK : ℜdL × ℜdL → ℜ is the kernel function associated with the map
ϕ : ℜdL → ℜdH . The trained machineg (x) may be written in terms of the kernel function:

g (y) =
∑

i

(αi − α∗
i )K (xi,y) + b (4)

The biasb is calculated indirectly, using the fact thatg (xi) = zi − ǫ for all i such that0 < αi < C (and likewise
g (xi) = zi + ǫ for all i such that0 < α∗

i < C).
At no point during training or use of the trained machine is knowledge of the exact form of mapϕ : ℜdL → ℜdH required.

Only the kernel functionK : ℜdL × ℜdL → ℜ is required, and any symmetric functionK : ℜdL × ℜdL → ℜ satisfying
Mercer’s condition [13] can be shown to be sufficient for the task [4].

Noting that each training vector corresponds to one pairαi, α∗
i , and that one of these will be zero for alli, we may divide

our training vectors into three distinct classes, namely:

• Non-support vectors:αi = α∗
i = 0, ξi = ξ∗i = 0.

• Boundary vectors:αi − α∗
i ∈

[

−C
N
,C
N

]

\{0}, ξi = ξ∗i = 0.
• Error vectors:αi = C

N
, ξi > 0 or α∗

i = C
N

, ξ∗i > 0.

Support vectors are any vectors which contribute to (4) (i.e. both boundary and error vectors). We defineNS to be the
number of support vectors in the training set,NE the number of error vectors andNB the number of boundary vectors; so
NS = NB +NE . Non-support vectors are said to lie inside theǫ-tube, boundary vectors on the edge of theǫ-tube and error
vectors outside theǫ-tube.

We will require the following theorem later:
Theorem 1:(Theorem 3.20, [14]): If the distribution from which the measured outputs{z1, z2, . . . , zN} are drawn is smooth

then:
lim

N→∞

NS

N
= lim

N→∞

NE

N

A. Monomialǫ-SV Regression

Consider (1) whenǫ = 0. If C is sufficiently large, and assuming that the empirical risk is non-zero, the second term (the
empirical risk term) will be much larger than the first term (the regularisation term). Hence, in this case:

R1 (w, b) ≈ C
N

∑

(xi,zi)∈Θ

|g (xi) − zi|

But this is just the Max-(log-)likelihood (ML) cost function for data affected by Laplacian noise [14]. It has been shown
[14] that, under certain assumptions given in section II-C,the optimal valueǫopt for ǫ when the output is affected by Laplacian
noise is0. For other types of noise it is often found thatǫopt 6= 0, as the empirical risk component of the cost function does
not correspond to the ML cost in such cases. The presence ofǫ allows us to achieve a degree of noise insensitivity even though
the cost function does not correspond the ML cost function.

The question raised by these observations is whether one mayachieve better performance in the SVR for non-Laplacian
noise by modifying the primal cost function to match the ML cost function whenC is large. However, when doing so we must
be mindful of the effect any changes may have on the mathematical tractability of the problem, as mathematical simplicity is
one of the major strengths of the SV approach.

One variant of standard SVR which is known to have a particularly simple dual form is Suykens’ least squares (LS) SV
method [10]. This uses the following modified primal cost function:

RLS (w, b) = 1
2w

T w + C
2N

∑

(xi,zi)∈Θ

(g (xi) − zi)
2

(5)

If C is sufficiently large the second (empirical risk) term in this expression will be dominant. But the empirical risk term in
(5) is just the ML cost function for training data affected byGaussian noise, so ifC is sufficiently large thenRLS (w, b) will
correspond approximately to the ML cost function for training data affected by Gaussian noise. Hence one would expect the
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LS-SVR to perform well in the presence of Gaussian noise. However, if the noise is not Gaussian, the lack ofǫ-insensitivity
in the primal is likely to make the LS-SVR excessively sensitive to noise.2

Motivated by this, we propose the following modification of the standardǫ-SVR primal:

Rq (w, b) = 1
2w

T w + C
qN

∑

(xi,zi)∈Θ

|g (xi) − zi|
q
ǫ (6)

whereq ∈ Z+ is a constant. IfC is large andǫ = 0, the second (empirical risk) term will be dominant and henceRq (w, b)
will correspond approximately to the ML cost function for degreeq polynomial noise, where polynomial noise of degreeq is
characterised by the density functionp (τ) = ce−d′|τ |q , wherec, d > 0 are constants.

If q = 1, (6) reduces to the standardǫ-SV cost function (1). Similarly, ifq = 2 and ǫ = 0, (6) reduces to primal form
of Suykens’ LS-SVR. However, like the standardǫ-SV cost function (1) (and unlike the LS-SVR cost function (5)), (6)
incorporatesǫ-insensitivity to achieve noise insensitivity when the empirical risk component of the cost function does not
match the noise process effecting the training data.

In terms of the usual slack variables, (6) may be written:

min
w,b,ξ,ξ∗

Rq (w, b, ξ, ξ∗)= 1
2w

T w+ C
qN

N
∑

i=1

(

ξ
q
i + ξ

∗q
i

)

such that:
(

wT ϕ (xi) + b
)

≥ zi − ǫ− ξi
−

(

wT ϕ (xi) + b
)

≥ −zi − ǫ− ξ∗i
ξ, ξ∗ ≥ 0

(7)

We shall refer to a regressor of form (7) as a monomialǫ-SVR (as the empirical risk term is a monomial function of
Vapnik’s ǫ-insensitive cost). Unfortunately, for the general caseq > 2 the dual form of (7) is rather complicated [15]. For this
reason we will restrict ourselves to the special caseq = 2 (quadricǫ-SVR), in which case it turns out that the dual problem
is mathematically “nice”.

Before we construct the dual form of (7) we show that ifq = 2 the positivity constraintsξ, ξ∗ ≥ 0 in (7) are superfluous,
giving us the simplified primal problem:

min
w,b,ξ,ξ∗

R2 (w, b, ξ, ξ∗)= 1
2w

T w+ C
2N

N
∑

i=1

(

ξ2i + ξ∗2i

)

such that:
(

wT ϕ (xi) + b
)

≥ zi − ǫ− ξi
−

(

wT ϕ (xi) + b
)

≥ −zi − ǫ− ξ∗i

(8)

We have the following theorems:
Theorem 2:For every solution(w, b, ξ, ξ∗) of (8), ξ, ξ∗ ≥ 0.

Proof: Suppose there exists a solution
(

w̄, b̄, ξ̄, ξ̄
∗)

of (8) such thatξ̄i < 0 for some1 ≤ i ≤ N . Then for all other
(w, b, ξ, ξ∗) satisfying the constraints contained in (8),R2 (w, b, ξ, ξ∗) ≥ R2

(

w̄, b̄, ξ̄, ξ̄
∗)

by definition.
Consider(w, b, ξ, ξ∗), wherew = w̄, b = b̄, ξ∗ = ξ̄

∗
and:

ξj =

{

ξ̄j if i 6= j

0 otherwise

First, note that as
(

w̄T ϕ (xi) + b̄
)

≥ zi−ǫ−ξ̄i, w = w̄, b = b̄, ξ̄i < 0 andξi = 0, it follows that
(

wT ϕ (xi) + b
)

≥ zi−ǫ−ξi.
Hence(w, b, ξ, ξ∗) satisfies the constraints in (8).

Second, note that:
R2

(

w̄, b̄, ξ̄, ξ̄
∗)

= R2 (w, b, ξ, ξ∗) + C
2 ξ̄

2
i

∴ R2 (w, b, ξ, ξ∗) < R2

(

w̄, b̄, ξ̄, ξ̄
∗)

These two observations contradict the original assertion that
(

w̄, b̄, ξ̄, ξ̄
∗)

with ξ̄i < 0 for some1 ≤ i ≤ N was a solution
of (8). Hence, for all solutions(w, b, ξ, ξ∗) of (8), ξ ≥ 0.

The proof of the non-negativity ofξ∗ follows from an analogous argument for the elements of this vector.
Theorem 3:Any solution (w, b, ξ, ξ∗) of (8) will also be a solution of (7) whenq = 2, and vice-versa.

Proof: This follows trivially from theorem 2.
Using (8) it is straightforward to construct the dual form of(7) whenq = 2 via the usual method. The dual is:

min
α,α∗

L2 (α,α∗) = 1
2 (α − α∗)

T
G (α − α∗) +

N
C

αT α + N
C

α∗T α∗−

(α − α∗)
T

z + ǫ (α + α∗)
T

1

such that: α,α∗ ≥ 0

1T (α − α∗) = 0

(9)

2As an alternative to the approach presented here, this problem may be tackled by using aweightedLS-SVR method [11]. This involves using a two-step
process. First, a standard LS-SVR is constructed. Based on this, weights are calculated for each training pair. These weights are subsequently used in a second
(weighted) LS-SVR, the training of which results in the trained machine.
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whereG is as before. The trained machine takes the same form as (4). Note that the only constraints in (9) are positivity
constraints on the dual variables,α andα∗, and a single equality constraint. Furthermore,ξ(∗) = N

C
α(∗).

B. Training Issues

To clearly see the structure of the monomialǫ-SVR dual problem (9), it is instructive to re-express it as follows:

min
α,α∗

Lq (α,α∗) =

[

α

α∗

]T

Q

[

α

α∗

]

+

[

α

α∗

]T

s

such that: α,α∗ ≥ 0

1T (α − α∗) = 0

(10)

where:

Q =

[

G −G

−G G

]

+ N
C

I

s =

[

ǫ1 − z

ǫ1 + z

]

Once we convert the problem into this form, it is essentiallytrivial to apply standard SVM training techniques (for example
[16], [17]) to the problem. We also have the following usefulproperty (which our formulation shares with Suykens’ LS-SVR
method):

Theorem 4:The dual problem (10) has a unique global solution.
Proof: It follows from page 79 of [18] that in order to prove that (10)has a unique solution it is sufficient to prove that

Q is positive definite. Since we are using a Mercer kernel,G is positive semidefinite. Given thatC > 0, it follows that N
C

I

is positive definite. We also know that, forG positive semidefinite,

[

G −G

−G G

]

must be positive semidefinite. HenceQ

must be positive definite, and (10) must have a unique global solution.
As an aside, note that ifG is not positive semidefinite to working precision,Q may still be made positive definite using

the Levenberg-Marquardt [19] [20] method by choosingC appropriately.

C. Asymptotically Optimal Selection ofǫ

In [14], Smola describes how, based on certain assumptions,the parameterǫ may be selected in an “optimal” fashion for
the standardǫ-SVR. While the assumptions made in this paper are not met by the SVR, experimental results suggest that
regardless of this the predictions made are reasonably accurate, and certainly provide a useful “first guess” of the optimal value
for ǫ. More importantly, Smola derives a relationship between the variance of the measurement noise and the efficiency of the
training machine if the machine is trained using a givenǫ.

Smola’s (and our) assumptions are:

1) The training set is infinitely large.
2) The functiong estimated by the SVR converges to the actual relationshipĝ.
3) The general SVR model is replaced by an unregularised location parameter estimator.

Mathematically, the third assumption is met in the limitK → 0, C → ∞, and implies thatg (x) = b. Throughout the
present paper, these will be referred to as “the usual assumptions”.

Following [14], assumeZ = {z1, z2, . . . , zN} is drawn in an i.i.d. manner from some probability density function p (z| θ)
with meanθ and varianceσ. Let θ̂ (Z) be an unbiased estimator forθ. The efficiencye of the estimator is defined to be [14]:

e = det (IB)
−1

whereI is the Fisher information matrix andB is the covariance matrix [14]. Loosely speaking, the higherthe efficiency, the
better the estimator (as there is less variance in the estimate of the meanθ). By optimal selection ofǫ, we mean choosing
ǫ ≥ 0 to maximise the efficiency,e. The value which achieves this maxima will be writtenǫopt. The Cramer-Rao bound [21]
states thate ≤ 1.

For a single parameter estimator of the form:

θ̂ (Z) = arg min
θ̂

∑

z∈Z

d
(

z, θ̂
)

(11)

whered
(

z, θ̂
)

is a piecewise twice differentiable function ofθ̂ then, asymptotically ([22], lemma 3):

e = Q2

IG
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where [14]:

I = N
∫

z

(

∂ ln p( z|θ)
∂θ

)2

p (z| θ)dz

G = N
∫

z

(

∂d(z,θ)
∂θ

)2

p (z| θ)dz

Q = N
∫

z

∂2d(z,θ)
∂θ2 p (z| θ)dz

Making the usual assumptions, the monomialν-SVR has form (11). That is:

d
(

z, θ̂
)

=
∣

∣

∣
z − θ̂

∣

∣

∣

q

ǫ

whereθ̂ = b andq ∈ Z+.
Define pstd (τ) and qstd (τ) to be, respectively, the normalised (zero mean, unit variance) and symmetrised normalised

distribution functions. That is:
qstd (τ) = 1

2 (pstd (τ) + pstd (−τ))
pstd (z) = σp (σz − θ| θ)

(12)

Then, denotingω = ǫ
σ

:

I = N
σ2

∫ ∞

−∞

(

∂ ln pstd(τ)
∂τ

)2

pstd (τ) dτ

G = N
∫ ∞

−∞

(

∂d(z,θ)
∂θ

)2

p (z| θ) dz

= N
∫

z∈ℜ\[θ−ǫ,θ+ǫ]

(

∂d(|z−θ|
ǫ)

∂|z−θ|
ǫ

)2
1
σ
pstd

(

z−θ
σ

)

dz

= Nσ2q−2
∫

τ∈ℜ\[−ω,ω]

(

∂d(|τ |ω)
∂|τ |

ω

)2

pstd (τ) dτ

= 2Nσ2q−2
∫ ∞

ω
(τ − ω)

2q−2
qstd (τ) dτ

Q = N
∫ ∞

−∞
∂2d(z,θ)

∂θ2 p (z| θ) dz

= N
∫

z∈ℜ\[θ−ǫ,θ+ǫ]

∂2d(|z−θ|
ǫ)

∂|z−θ|2
ǫ

1
σ
pstd

(

y−θ
σ

)

dz

= Nσq−2
∫

τ∈ℜ\[−ω,ω]

∂2d(|τ |ω)
∂|τ |2

ω

pstd (τ) dτ

= 2Nσq−2

{

qstd (ω) if q = 1

(q−1)
∫ ∞

ω
(τ − ω)

q−2
qstd (τ) dτ if q ≥ 2

Consequently:

e (ω) = 2
Istd











q2
std(ω)

( 1
2−

∫

ω

0
qstd(τ)dτ)

if q = 1

(q−1)
2 (

∫

∞

ω
(τ−ω)q−2qstd(τ)dτ)

2

(
∫

∞

ω
(τ−ω)2q−2qstd(τ)dτ)

if q ≥ 2
(13)

where:

Istd =
∫ ∞

−∞

(

∂ ln pstd(τ)
∂τ

)2

pstd (τ) dτ

is the efficiency of the monomialǫ-SVR under the usual assumptions. Theoptimalvalueǫopt of the parameterǫ ≥ 0 is defined
to be the value which maximizes this efficiency (thereby minimising the variance in the estimate ofb).

Defining:
ωopt = arg min

ω

1
e(ω) (14)

it is clear that maximum efficiency will be achieved by setting ǫ = ǫopt = ωoptσ. This implies thatǫopt is directly proportional
to the noise varianceσ, where the constant of proportionality is dependent on the type of noise. If the type and amount
(variance) of the noise are both known, (14) provides a reasonable basis for selectingǫ (or at least a reasonable “first guess”).

If q = 2, (13) can be used to obtain the theoretical efficiency of Suykens’ LS-SVR, under the usual assumptions, by setting
ǫ = 0. For later reference, we defineeLS to be this efficiency, i.e.:

eLS = 2
Istd

(
∫

∞

0
qstd(τ)dτ)

2

(
∫

∞

0
τ2qstd(τ)dτ)

(15)
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D. Sparsity of the monomialǫ-SVR

As discussed previously, part of our motivation for developing the framework for monomialǫ-SVR is Suykens’ LS-SVR
technique. Indeed, ifC is sufficiently large and the noise affecting measurements Gaussian, LS-SVR corresponds approximately
to the ML estimator for the parametersw andb. However, a downside of the LS-SVR approach is the lack of sparsity in the
solution [10], where by sparsity we are referring here to thenumber of non-zero elements in the vectorα−α∗ or, equivalently
asN → ∞ (see theorem 1), the fraction of training vectors that are also support vectors. In the LS-SVR case, all training
vectors are support vectors, i.e.NS = N . While the sparsity problems of the LS-SVR may be overcome to adegree using the
weighted LS-SVR approach [11], this approach is somewhat heuristic in nature, requiring some external arbiter (eitherhuman
or machine) to decide when to cease pruning the dataset. However, by maintaining theǫ-insensitive component of the cost
function, the need for such heuristics (at least at this level of abstraction) is removed3.

So long asǫ > 0, we would expect that the solutionα − α∗ to the monomialǫ-SVR dual problem will contain some
non-zero fraction of non-support vectors. Under the usual assumptions, we have the following theorem:

Theorem 5:The fraction of support vectors found by theǫ-SVR under the usual assumptions will, asymptotically, be:

lim
N→∞

NS

N
= 2

∫ ∞

ω
qstd (τ) dτ

whereω = ǫ
σ

.
Proof: Given that errors vectors are those for which|g (xi) − zi|ǫ > 0 (i.e. those lying outside theǫ-tube), using theorem

1 it can be seen that:
lim

N→∞

NS

N
= lim

N→∞

NE

N
= Pr (|g (x) − ĝ (x)| > ǫ)

=
∫

z∈ℜ\[θ−ǫ,θ+ǫ]

p (z| θ) dz

=
∫

z∈ℜ\[−ω,ω]

pstd (τ) dτ

= 2
∫ ∞

ω
qstd (τ) dτ

whereω = ǫ
σ

.
Note that this implies that:

lim
N→∞
ǫ→0

NS

N
= 1

as expected for LS-SVR. It also implies that any decrease inǫ is likely to lead to a decrease in the sparsity of the solution.
So, in general, if the training set is large thenǫ should be chosen to be as large as possible while still maintaining acceptable
performance to maximise the sparsity of the solution.

III. ν-SV REGRESSION

The major drawback ofǫ-SVR is apparent in the relationǫopt = ωoptσ. Specifically, selection ofǫ requires knowledge of
what type of and how much noise is present in the training set (or alternatively we must have a specific intended accuracy to
use as a basis for selectingǫ). However, while we may have some idea of the type of noise we can expect to be dealing with
for a given problem (and hence be able to calculateωopt), we are unlikely to know how much noise will be present, leaving
σ (and thereforeǫopt) uncertain.

To overcome this problem, Scholkopf et. al. [7] introduced the ν-SVR formulation of the problem, which includes an
additional term in the primal problem to trade-off the tube size (ǫ, no longer a constant) against model complexity and
empirical risk.

From [7], the primal formulation of the standardν-SVR training problem is:

min
w,b,ξ,ξ∗

,ǫ

R1,1 (. . .) = 1
2w

T w + Cνǫ+ C
N

N
∑

i=1

(ξi + ξ∗i )

such that:
(

wT ϕ (xi) + b
)

≥ zi − ǫ− ξi
−

(

wT ϕ (xi) + b
)

≥ −zi − ǫ− ξ∗i
ξ, ξ∗ ≥ 0

ǫ ≥ 0

(16)

3Of course, some heuristic input will still be required for each approach, either forǫ selection or when deciding how much compromise is acceptable during
pruning. The advantage of the former is that there exist alternative criteria which may be used to selectǫ (i.e. optimal performance for a given noise model),
with sparsity properties being just a useful side affect of this choice. If the dataset is very large, however, sparsity may be of primary importance, in which
case neither approach will have a clear advantage.
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whereν > 0 is a constant. The associated dual is [7]:

min
α,α∗

L1,1 (α,α∗) = 1
2 (α − α∗)

T
G (α − α∗)−

(α − α∗)
T

z

such that: 0 ≤ α ≤ C
N

1

0 ≤ α∗ ≤ C
N

1

1T (α − α∗) = 0
1T (α + α∗) ≤ Cν

(17)

whereG is as before.
We require the following theorem:
Theorem 6:(Theorem 3.20, [14]): For aν-SVR trained with any training set of sizeN :

1) ν is an upper bound on the fraction of error vectors.
2) ν is a lower bound on the fraction of support vectors.

From this theorem we can immediately see that:

ν = lim
N→∞

NS

N

A. Monomialν-SV Regression

We shall demonstrate shortly that there is a direct functional relationship betweenν and the theoretical efficiencye (under
the usual assumptions) that is independent ofσ. This means that it is possible to findνopt to achieve maximum theoretical
efficiency without knowing the noise varianceσ (although the type of noise is still required). However, theprice we pay for
this is increased complexity in the dual formulation (17), specifically the presence of a new constraint,1T (α + α∗) ≤ Cν.
Also, like standardǫ-SVR, the empirical risk component of the standardν-SVR primal corresponds to ML only for Laplacian
noise. To deal with these issues, we introduce the followingformulation:

min
w,b,ξ,ξ∗

,ǫ

Rq,r (. . .) = 1
2w

T w + Cν
r
ǫr + C

qN

N
∑

i=1

(

ξ
q
i + ξ

∗q
i

)

such that:
(

wT ϕ (xi) + b
)

≥ zi − ǫ− ξi
−

(

wT ϕ (xi) + b
)

≥ −zi − ǫ− ξ∗i
ξ, ξ∗ ≥ 0

ǫ ≥ 0

(18)

whereq, r ∈ Z+ are constants. We shall refer to this as monomialν-SVR whenq = r. This reduces to the standardν-SVR
primal (16) if we chooseq = r = 1. We will be concentrating on the caseq = r = 2 (quadricν-SVR).

We have already shown in theorem 2 (which will hold here also)that the positivity constraintsξ, ξ∗ ≥ 0 are superfluous
if q = 2. We now show that the constraintǫ ≥ 0 is also superfluous ifr = 2, giving us the simplified primal problem when
q = r = 2:

min
w,b,ξ,ξ∗

,ǫ

R2,2 (. . .) = 1
2w

T w + Cν
2 ǫ

2 + C
2N

N
∑

i=1

(

ξ2i + ξ∗2i

)

such that:
(

wT ϕ (xi) + b
)

≥ zi − ǫ− ξi
−

(

wT ϕ (xi) + b
)

≥ −zi − ǫ− ξ∗i

(19)

We have the following theorems:
Theorem 7:For every solution(w, b, ξ, ξ∗, ǫ) of (19), ǫ ≥ 0.

Proof: Suppose there exists a solution
(

w̄, b̄, ξ̄, ξ̄
∗
, ǭ

)

of (19) such that̄ǫ < 0. Then:

R2,2

(

w̄, b̄, ξ̄, ξ̄
∗
, ǭ

)

= R2,2

(

w̄, b̄, ξ̄, ξ̄
∗
, 0

)

+ Cν
2 ǭ

2

∴ R2,2

(

w̄, b̄, ξ̄, ξ̄
∗
, 0

)

< R2,2

(

w̄, b̄, ξ̄, ξ̄
∗
, ǭ

)

Furthermore, if the constraints in (19) are satisfied for
(

w̄, b̄, ξ̄, ξ̄
∗
, ǭ

)

they must also be satisfied for
(

w̄, b̄, ξ̄, ξ̄
∗
, 0

)

. Therefore
(

w̄, b̄, ξ̄, ξ̄
∗
, ǭ

)

does not minimiseR2,2 subject to the constraints and hence cannot be a solution of (19), which contradicts the
original assertion. So we conclude that every solution(w, b, ξ, ξ∗, ǫ) of (19) must satisfyǫ ≥ 0.

Theorem 8:Any solution (w, b, ξ, ξ∗, ǫ) of (19) will also be a solution of (18) whenq = r = 2, and vice-versa.
Proof: This follows trivially from theorems 7 and 2.
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It is not difficult to show that the dual form of (19) (and hence(18) with q = r = 2) is:

min
α,α∗

L2,2 (α,α∗) = 1
2 (α − α∗)

T
G (α − α∗) +

1
2 (α + α∗)

T 1
Cν

E (α + α∗)−
N
C

αT α + N
C

α∗T α∗−

(α − α∗)
T

z

such that: α,α∗ ≥ 0

1T (α − α∗) = 0

(20)

whereE is a matrix where all elements are1. The trained machine takes the same form as (4). Furthermore:

ǫ = 1
Cν

1T (α + α∗)

ξ(∗) = N
C

α(∗)

from which we see that:
ǫ = 1

ν
1
N

∑

(xi,zi)∈Θ

|g (xi) − zi|ǫ (21)

Note that the only constraints in (20) are positivity constraints on the dual variables,α and α∗, and a single equality
constraint. By comparison, the standardν-SVR dual (17) (which is otherwise of comparable complexity) has upper bounds on
these variables and an upper bound on1T (α + α∗).

For training purposes, note that (20) may be expressed identically to (10) by setting:

Q =

[

G −G

−G G

]

+ 1
Cν

E + N
C

I

s =

[

−z

z

]

Like monomial ǫ-SVR, this form will have a unique global minimum (to see this, note that the additional term1
Cν

E is
positive semidefinite and therefore will not affect the validity of theorem 4).

Finally, note that in the limitν → ∞ it is clear from (21) that ifq = r = 2, ǫ→ 0. In fact, it is clear from the general form
of the monomialν-SVR (18) that asν → ∞ we must haveǫ → 0 to ensure that the primal costR2,2 is finite. This implies
that in the limitν → ∞ the form of the quadricν-SVR approaches the form of the LS-SVR.

B. Asymptotically Optimal Selection ofν

In section II-C, we showed that forǫ-SVR the theoretical efficiencye is a function ofω = ǫ
σ

. We now show thate may
also be expressed (somewhat indirectly) as a function ofν (making the usual assumptions), independent ofσ if q = r. The
advantage of this form is that, unlikeǫopt, calculation ofνopt (the value ofν which results in maximum efficiency) does not
require knowledge ofσ.

Consider the regularised cost function in its primal form:

min
w,b,ξ,ξ∗

,ǫ

Rq,r (. . .) = 1
2w

T w + Cν
r
ǫr + C

qN

N
∑

i=1

(

ξ
q
i + ξ

∗q
i

)

such that:
(

wT ϕ (xi) + b
)

≥ zi − ǫ− ξi
−

(

wT ϕ (xi) + b
)

≥ −zi − ǫ− ξ∗i
ξ, ξ∗ ≥ 0

ǫ ≥ 0

where the positivity constraints onǫ, ξ andξ∗ may or may not be superfluous; andr, q ∈ Z+. First, we note that:

∂Rq,r

∂ǫ
= C

(

νǫr−1 + 1
N

N
∑

i=1

(

ξ
q−1
i

∂ξi

∂ǫ
+ ξ

∗q−1
i

∂ξ∗

i

∂ǫ

)

)

where4:
∂ξi

∂ǫ
=

{

0 if g (xi) > zi − ǫ or (g (xi) = zi − ǫ, δǫ > 0)
−1 otherwise

∂ξ∗

i

∂ǫ
=

{

0 if g (xi) < zi + ǫ or (g (xi) = zi + ǫ, δǫ > 0)
−1 otherwise

4We have taken some liberties here when calculating this derivative, which is not actually well defined. However, the rate of change asǫ is either increased
or decreased is well defined, which is what we are indicating here.
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and hence:

∂Rq,r

∂ǫ
= C















νǫr−1 − NS

N
q = 1, δǫ < 0

νǫr−1 − NE

N
q = 1, δǫ > 0

νǫr−1 − 1
N

N
∑

i=1

(

ξ
q−1
i + ξ

∗q−1
i

)

otherwise

= C















νǫr−1 − NS

N
q = 1, δǫ < 0

νǫr−1 − NE

N
q = 1, δǫ > 0

νǫr−1 − 1
N

N
∑

i=1

|zi − g (xi)|
q−1
ǫ otherwise

(22)

We aim to selectν to arrive at a specificǫ. In order to achieve this, the optimality condition∂Rq,r

∂ǫ
= 0 must be met for

this particular value ofǫ. In other words, ifq ≥ 2 we require that:

ν = ǫ1−r 1
N

N
∑

i=1

(

ξ
q−1
i + ξ

∗q−1
i

)

= ǫ1−r 1
N

N
∑

i=1

∣

∣zi −
(

wT ϕ (xi) + b
)∣

∣

q−1

ǫ

Applying the usual assumptions (g (x) = b, N → ∞), we find that in all cases5:

ν = σq−r
[

2ω1−r
∫ ∞

ω
(τ − ω)

q−1
qstd (τ)dτ

]

where, as usual,ω = ǫ
σ

, andqstd (τ) is defined by (12) . Ifq = r then:

ν = 2ω1−q
∫ ∞

ω
(τ − ω)

q−1
qstd (τ)dτ (23)

This implies that ifq = r then ν may be selected to achieve a particular efficiencyeselect (assuming said efficiency is
achievable) by findingω required to achieve this and then substituting this into therelevant expression forν. At no point is
it necessary to useσ, so only the noise type is required.

Note that if we selectq = r = 1, we can retrieve Smola’s original result [14]:

ν = 1 −
∫ ω

−ω
pstd (τ) dτ

from which see that for a standardν-SVR if ν = 1 then, in the limitN → ∞, ω = ǫ = 0.
Generally, ifq = r then in order to achieve maximum efficiency we should choose:

νopt = 2ω1−q
opt

∫ ∞

ωopt
(τ − ωopt)

q−1
qstd (τ)dτ

where:
ωopt = arg min

ω

1
e(ω)

C. Sparsity of the Monomialν-SVR

We have shown in theorem 5 that, under the usual assumptions:

lim
N→∞

NS

N
= 2

∫ ∞

ω
qstd (τ) dτ

which is a 1-1 function (onω ≥ 0) if the distributionqstd (τ) is positive onτ ≥ 0. We have also shown in the previous section
that (again using these assumptions) ifq = r then from (23):

ν = 2ω1−q
∫ ∞

ω
(τ − ω)

q−1
qstd (τ)dτ

which is also a 1-1 function (onω ≥ 0) if qstd (τ) is positive onτ ≥ 0.
These two functions demonstrate that in general there exists a direct relation between the asymptotic value (N → ∞) of

the fraction of support vectors in the training set (and hence the sparsity of the solution) and the parameterν. In general, the

5If q = 1 then in the limitN → ∞ (22) becomes:

lim
N→∞

∂R1,r

∂ǫ
= C







νǫr−1 − lim
N→∞

NS

N
if δǫ < 0

νǫr−1 − lim
N→∞

NE

N
if δǫ > 0

which is well defined, as theorem 1 states thatlim
N→∞

NS

N
= lim

N→∞

NE

N
. For optimality,

∂Rq,r

∂ǫ
= 0, and so using theorem 5 it follows that, ifq = 1:

ν = σ1−r
[

2ω1−r
∫

∞

ω
qstd (τ)dτ

]
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TABLE I

OPTIMAL ǫ

σ
AND ν FOR STANDARD AND QUADRIC (LABELLED (S) AND (Q), RESPECTIVELY) ǫ-SVR AND ν-SVR METHODS WITH POLYNOMIAL

ADDITIVE NOISE OF DEGREE1 ≤ p ≤ 6, AND ASYMPTOTIC SUPPORT VECTOR RATIO’ S AT OPTIMALITY.

Polynomial degree 1 2 3 4 5 6

Optimal ǫ

σ
(S) 0 0.61 1.12 1.36 1.48 1.56

Optimal ν (S) 1 0.54 0.29 0.19 0.14 0.11
lim

N→∞

NS

N
(S) 1 0.54 0.29 0.19 0.14 0.11

Optimal ǫ

σ
(Q) 0 0 0.61 0.97 1.17 1.30

Optimal ν (Q) ∞ ∞ 0.56 0.18 0.09 0.05
lim

N→∞

NS

N
(Q) 1 1 0.59 0.39 0.30 0.23

exact nature of this relation will be dependent of the form ofthe noise process affecting the training data. In the special case
q = r = 1 (i.e. standardν-SVR), we see that:

ν = 2
∫ ∞

ω
qstd (τ)dτ

and so:
ν = lim

N→∞

NS

N

which coincides with the asymptotic form of theorem 6.

IV. PERFORMANCE IN THEPRESENCE OFPOLYNOMIAL NOISE

To gain a better understanding of the method, we will consider a particular example where the training data is affected by
additive noise that is polynomial in nature (this includes Gaussian and Laplacian noise as special casesp = 2 and p = 1
respectively). For polynomial noise,pstd (τ) = cpe

−c′p|τ |
p

, p ∈ Z+, where:

cp = 1
2

p

Γ( 1
p )

√

Γ( 3
p )

Γ( 1
p )

c′p =

(
√

Γ( 3
p )

Γ( 1
p )

)p

We will consider the related questions of optimal parameterselection and sparsity, comparing Smola’s standardν-SVR, our
monomialν-SVR and Suykens’ LS-SVR method.

A. Asymptotically Optimal Selection ofǫ and ν

Using (13) and (23) it is not difficult to show that under the usual assumptions, for a monomialν-SVR, denoting the
efficiency of an orderq monomialSV R for a training set affected by polynomial noise of orderp asep,q (ω) (under the usual
assumptions), and likewise the connection (23) betweenν andω asνp,q (σ, ω):

ep,q (ω) = 1

Γ(2− 1
p )











e
−2c′pωp

k0,p(ω) if q = 1
(

q−1

pc′p

1
p

)2
k

2
q−2,p(c′p;ω)

k2q−2,p(c′p;ω)
if q ≥ 2

(24)

eLS =
Γ2( 1

p )
p2Γ(2− 1

p )Γ( 3
p )

(25)

νp,q (σ, ω) =

[

2cp

pc′p

1
p

1
ωq−1 kq−1,p

(

c′p;ω
)

]

(26)

where we have defined:
km,p (β;ω) = pβ

1
p

∫ ∞

ω
(τ − ω)

m
e−βτp

dτ

=
m
∑

i=0

(

m
i

)

(−ω)
m−i

β− i
p Γ

(

i+1
p
, βωp

) (27)

for m ∈ Z\Z− andp ∈ Z+; andΓ (a, x) is the complementary incomplete gamma function [23]:

Γ (a, x) =
∫ ∞

x
ta−1e−tdt

Table I shows the optimal values forǫ and ν for polynomial noise of degree1 ≤ p ≤ 6 for both standard and quadric
ǫ-SVR andν-SVR (source [14]). Unsurprisingly, the optimal value forǫ for the quadricǫ-SVR in the presence of Gaussian
noise (p = 2) is 0, as in this case the quadricǫ-SVR primal and the maximum-likelihood estimator both takeapproximately
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Fig. 1. Comparative inverse asymptotic efficiency versusǫ

σ
of standardǫ-SVR, quadricǫ-SVR and LS-SVR for polynomial noise of degrees1 ≤ p ≤ 6.

In all cases, the solid line represents the efficiency of quadric ǫ-SVR, the dotted line the efficiency of standardǫ-SVR, and the dashed line the efficiency of
the LS-SVR.

the same form ifǫ = 0 andC is large (just asǫopt = 0 for standardǫ-SVR in the presence of Laplacian noise (p = 1)). Note
also that, for the cases represented in the table,ǫopt > 0 for all p > q and ǫopt = 0 for all p ≤ q. Generally:

Theorem 9:Under the usual assumptions, given a set of training data affected by polynomial noise of degreep = q with
non-zero variance, the optimal value (ǫopt which maximizese) for the parameterǫ as defined by (24) will be zero.

Theorem 10:Under the usual assumptions, given a set of training data affected by polynomial noise of degreep > q with
non-zero variance, the optimal value (ǫopt which maximizese) for the parameterǫ as defined by (24) will be positive.

Conjecture 11:Under the usual assumptions, given a set of training data affected by polynomial noise of degreep < q with
non-zero variance, the optimal value (ǫopt which maximizese) for the parameterǫ as defined by (24) will be zero.

The proofs for theorems 9 and 10, and a partial proof of conjecture 11 (which we have observed experimentally to be try
for all 1 ≤ q ≤ 1000) may be found in appendix I.

Figure 1 shows the inverse asymptotic efficiency versusǫ
σ

for both standard and quadricǫ-SVRs, as well as LS-SVR. Note
that with the exception of Laplacian noise (p = 1) the optimal theoretical efficiency of the quadricǫ-SVR exceeds the optimal
theoretical efficiency of the standardǫ-SVR. Also note that the efficiency of monomialǫ-SVR methods exceeds that of LS-SVR
for all p > 2.

Finally, figure 2 shows the inverse asymptotic efficiency versusν for both standard and quadricν-SVRs, as well as LS-SVR.
The important thing to note from these graphs is that, although the range ofν is much larger for quadricν-SVR methods than
for standardν-SVR methods, the efficiency itself quickly flattens out. In particular, although the theoretically optimal value
for Gaussian noise isν → ∞, it can be seen that even whenν = 1 the efficiency is very close to it’s maximum,e = 1. Also
note the comparative flatness of the efficiency curves for quadric ν-SVR.

B. Sparsity Issues

In the case of polynomial noise, theorem 5 implies that for monomial SVRs:

lim
N→∞

NS

N
=

2cp

pc′p

1
p

k0,p

(

c′p;ω
)

We have already observed that for monomialν-SVRs:

νp,q (ω) =
2cp

pcp
′

1
p

1
ωq−1 kq−1,p

(

c′p;ω
)

Or, in the two cases of particular interest (standard (q = 1) and quadric (q = 2) ν-SVR):

νp,1 (ω) =
2cp

pcp
′

1
p

k0,p

(

c′p;ω
)

νp,2 (ω) =
2cp

pcp
′

1
p

1
ω

k1,p

(

c′p;ω
)
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Fig. 2. Comparative inverse asymptotic efficiency versusν of standardν-SVR, quadricν-SVR and LS-SVR for polynomial noise of degrees1 ≤ p ≤ 6.
In all cases, the solid line represents the efficiency of quadric ν-SVR, the dotted line the efficiency of standardν-SVR and the dashed line the efficiency of
the LS-SVR. Note that for all graphs theν-scale differs for standard and quadricν-SVRs. For standardν-SVRs, the actual setting forν is one tenth of that
indicated on the x axis (for quadricν-SVRs,ν is as indicated).

In the caseq = 1, as expected, this implies:
lim

N→∞

NS

N
= ν

The caseq = 2 is slightly more complex, and best illustrated graphically. We do this in figure 3, which shows our predictions
for the fraction of support vectors found as a function ofν for both standard and quadricν-SVR methods for polynomial
noise of degree1 ≤ p ≤ 6. Note that the general shape of the curves is essentially identical in all cases. Generally, the fraction
of support vectors found by the quadricν-SVR will increase quickly whileν is small and then level out, approaching1 as
ν → ∞ (as expected, given that the LS case corresponds withν → ∞ and treats all vectors as support vectors).

Table I gives the expected asymptotic ratio of support vectors to training vectors whenν is optimally selected for the usual
degrees of polynomial noise. On average, the results given in the table imply that quadricν-SVRs may require approximately
twice as many support vectors as standardν-SVRs to achieve optimal accuracy on the same dataset. This may be understood
by realising that the act of extracting support vectors is essentially a form of lossy compression. The modifiedν-SVR is
(theoretically) able to achieve more accurate results thanstandardν-SVR because it can handle more information (by using
less compression or, equivalently, finding more support vectors) before over-fitting (and subsequent degradation in performance)
begins.

V. EXPERIMENTAL RESULTS

Due to the restrictive assumptions made when deriving the results for theoretical efficiency given in the preceding sections
(which will, in the strictest sense, never be satisfied for any SVR), it is important that we seek some form of experimental
confirmation of these results. This is our aim in the present section.

For ease of comparison our experimental procedure is modelled on that of [24]. We have numerically computed the risk
in the form of root mean squared error (RMSE) as a function ofν for both standard and quadricν-SVR methods, allowing
clear comparison between the two methods. We also compute the RMSE for Suykens’ LS-SVR, which is the limiting case of
quadricν-SVR asν → ∞, and (non-sparse) weighted LS-SVR [11]. Plots of risk versus ν are given for polynomial noise of
degree1 ≤ p ≤ 6 to compare the theoretical and experimental results, and some relevant results are given for the effect of
other parameters on theν curves.

Finally, we compare the sparsity of standard and quadricν-SVR for different orders of polynomial noise1 ≤ p ≤ 6, and
compare these results with the theoretical predictions.

As in [24], the training set consisted of100 examples(xi, zi) wherexi is drawn uniformly from the range[−3, 3] and zi

is given by the noisy sinc function:
zi = sinc (xi) + ζi

= sin(πxi)
πxi

+ ζi
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Fig. 3. Comparative asymptotic fraction of support vectors versusν of standard and quadricν-SVR for polynomial noise of degrees1 ≤ p ≤ 6. In all
cases, the solid line represents the efficiency of modifiedν-SVR and the dotted line standardν-SVR. Note that for all graphs theν-scale differs for standard
and quadricν-SVRs. For standardν-SVRs, the actual setting forν is one tenth of that indicated on the x axis (for quadricν-SVRs,ν is as indicated).

whereζi represents additive polynomial noise. The test set consisted of 500 pairs(xi, zi) where thexi’s were equally spaced
over the interval[−3, 3] andzi was given by the noiseless sinc function.500 trials were carried out for each result.

Quadricν-SVR, standard LS-SVR and weighted LS-SVR code for this experiment was written in C++ and compiled using
DJGPP on a 1GHz Pentium III with 512MB of memory, running Windows 20006. Experiments using standardν-SVR methods
were done using LibSVM [16].

By default, we set the parameterC = 100 and noise varianceσ = 0.5. In all experiments we use the Gaussian RBF kernel

functionK (x,y) = e
− 1

2σ2
kernel

‖x−y‖2

where2σ2
kernel = 1 by default.

A. Additive Polynomial Noise

In our first experiment, we have used training data affected by polynomial noise of degree1 ≤ p ≤ 6. Plots of RMSE for
standardν-SVR, quadricν-SVR, LS-SVR and weighted LS-SVR are shown in figure 4. With the exception of Laplacian noise
(p = 1), these results resemble the theoretical predictions shown in figure 2. Note that the quadricν-SVR outperforms both
standardν-SVR and (weighted and unweighted) LS-SVR in all cases except Laplacian noise (p = 1).

Whilst the general shape of the RMSE curves closely resemblesthe shape of the predicted efficiency curves, it is important
to note that the sharp optimum predicted by the theory forp ≥ 4 (see figure 2) is not present in the experimental results.
Instead, the region of optimality is somewhat to the right ofthis and also somewhat blunter.

From an application point of view, this is actually an advantage, as it means that results are far less sensitive toν than
expected. Indeed, from these results we can empirically saythat the “sweet spot” forν lies between0.5 and1 for polynomial
noise of degreep ≥ 3 and anything above2 otherwise. But, roughly speaking, selectingν = 1 will in all cases presented give
results superior to the standardν-SVR method and at least comparable to the LS-SVR methods (better if p ≥ 3).

In the case of Laplacian noise the actual performance (in terms of RMSE) of both the quadricν-SVR and the LS-SVRs are
better than that of the standardν-SVR, whereas theory would suggest that this should not be the case. We are unsure as to
why this anomaly occurs.

Figure 5 shows the ratio of support vectors to training vectors for both standard and quadricν-SVRs as a function ofν.
These curves closely match the predictions given in figure 3.It is clear from figures 4 and 5 that, as expected, the number of
support vectors found by the quadricν-SVR is substantially larger than the number found by the standardν-SVR. However,
this is still substantially less than the number of support vectors found by the LS-SVR (which uses all training vectors as
support vectors).

B. Parameter Variation with Additive Gaussian Noise

In our second experiment, we consider the performance of thestandard and quadricν-SVR in the presence of additive
Gaussian noise as other parameters of the problem (particularly σ (the noise variance),C andσkernel). In particular, we wish

6code available at http://www2.ee.mu.oz.au/pgrad/apsh/svm/
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Fig. 4. Risk (RMSE) versusν for sinc data with polynomial noise of degreep ∈ {1, 2, 3, 4, 5, 6} working left to right, top to bottom (c.f. [24], figure 2).
In all cases,σ = 0.5, C = 100 and2σ2

kernel
= 1. Note that for all graphs theν-scale differs for standard and modifiedν-SVRs. For standardν-SVRs, the

actual setting forν is one tenth of that indicated on the x axis (for modifiedν-SVRs,ν is as indicated).

to see if the RMSE versusν curve retains the same general form as these parameters are varied.

The top row of figure 6 shows the form of the RMSE versusν curve for a range of noise levels. In all cases the form of the
curves remains essentially unchanged. It will be noted, however, that for the lowest noise case (σ = 0.1) the standardν-SVR
is able to out-perform the quadricν-SVR. We are unsure as to why this occurs. Once again, selecting ν > 1 gives reasonable
performance in all cases (c.f. Smola’s result for standardν-SVR [9], where the “optimal area” isν ∈ [0.3, 0.8]).

The middle row of figure 6 shows the same curve with the noise variance σ fixed for different values ofC, namely
C ∈ {10, 100, 1000}. Once again, the RMSE curve for quadricν-SVR is roughly as predicted, andν > 1 gives reasonable
results. In this case,C = 10 provides an anomalous result.

Finally, in the bottom row of figure 6 , we give the RMSE versusν curves when the kernel parameter2σ2
kernel is varied.

These results follow the same pattern as for variation ofσ andC.

It is interesting to note here that, while the RMSE versusν curve obtained using the quadricν-SVR fits more closely the
predicted curve than does the same curve for standardν-SVR when parameters are chosen badly, this does not imply that
the performance of the quadricν-SVR will necessarily be better than the standardν-SVR in this case. Indeed, the two cases
where other SV parameters (i.e. notν) have been chosen badly (i.e.C = 10 and2σ2

kernel = 0.1 in figure 6) are the two cases
where the standardν-SVR most outperforms the quadricν-SVR. However, as one should continue to search until appropriate
parameters are found, this should not be too much of a problemin practical situations.

VI. CONCLUSION

In this paper we have reviewed the standard SVR techniques ofǫ-SVR andν-SVR. Motivated by the relative merits and
demerits of these approaches, we then introduced a new, moregeneral form of SVR (monomialν-SVR). We proceeded
to investigate a special case of monomialν-SVR (quadricν-SVR) in some detail and showed that the dual form of the
quadric ν-SVR dual problem is significantly simpler than the standardν-SVR dual. We have compared the theoretical
asymptotic efficiencies of our proposed formulation against other SVR methods under certain restrictive assumptions.Our
investigation indicates that the quadricν-SVR method not only shares the standardν-SVR method’s property of (theoretical)
noise variance insensitivity, but is also more efficient in many cases (in particular, when the training data is affectedby
polynomial noise of degreep ≥ 2). These predictions have been experimentally tested, and comparisons have been made
between the performances of quadricν-SVR, standardν-SVR, standard LS-SVR and weighted LS-SVR methods in the
presence of higher order polynomial noise. Based on these results, we conclude that the theoretical predictions give a useful
insight into the characteristics of the various methods. Both theoretical and experimental results indicate that performance of
the quadricν-SVR method in many cases exceeds that of both standardν-SVR and LS-SVR.
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Fig. 5. Number of support vectors (out of100 training vectors) versusν for sinc data with polynomial noise of degreep ∈ {1, 2, 3, 4, 5, 6} working left to
right, top to bottom. In all cases,σ = 0.5, C = 100 and2σ2

kernel
= 1. The dotted line gives results for standardν-SVR, while the solid line gives results

for quadricν-SVR. Note that for all graphs theν-scale differs for standard and modifiedν-SVRs. For standardν-SVRs, the actual setting forν is one tenth
of that indicated on the x axis (for modifiedν-SVRs,ν is as indicated).
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Fig. 6. Risk (RMSE) versusν for sinc data with Gaussian noise (c.f. [24], figure 1). The top row shows performance for different noise variances,
σ ∈ {0.1, 0.5, 1} from left to right, with C = 100 and 2σ2

kernel
= 1. The middle row gives performance forC ∈ {10, 100, 1000}, respectively, with

σ = 0.5 and2σ2

kernel
= 1. Finally, the bottom row shows performance for2σ2

kernel
∈ {0.1, 1, 10}, respectively, withσ = 0.5 andC = 100. Note that for

all graphs theν-scale differs for standard and quadricν-SVRs. For standardν-SVRs, the actual setting forν is one tenth of that indicated on the x axis (for
quadricν-SVRs,ν is as indicated).
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APPENDIX I
PROOFS OFTHEOREMS

In this appendix we give proofs for theorems 10 and 9, and a partial proof of conjecture 11. Before proceeding, however,
some preliminary results are required. In what follows,B (x, y) is thebeta function[25]:

B (x, y) = Γ(x)Γ(y)
Γ(x+y)

It is straightforward to show that:

d
dω

km,p (β;ω) = −

{

mkm−1,p (β;ω) if m > 0

pβ
1
p e−βωp

if m = 0
(28)

km,p (β; 0) = β−m
p Γ

(

m+1
p

)

(29)

Theorem 12: lim
x→0+

xΓ (ax) = 1
a

for all a > 0.

Proof: Using the Euler limit form ofΓ (x) [26], it can be seen that:

xΓ (ax) = x 1
ax

∏∞
n=1

[

(

1 + 1
n

)ax (

1 + ax
n

)−1
]

and therefore lim
x→0+

xΓ (ax) = 1
a
.

Theorem 13:B (a+ c, b) > B (a, b+ c) for all a > b, a, b, c > 0; andB (a+ c, b) < B (a, b+ c) for all a < b, a, b, c > 0.
Proof: From [25], section 1.5, equation 5, it can be seen that:

B (a+ c, b) = B(c,b)
B(a,c)B (a, b+ c)

=
Γ(b)

Γ(b+c)
Γ(a)

Γ(a+c)

B (a, b+ c)
(30)

But the gradientψ0 (x) of ln (Γ (x)) is a monotonically increasing function ofx > 0, and so for alla > b, a, b, c > 0:

ln (Γ (a+ c)) − ln (Γ (a)) > ln (Γ (b+ c)) − ln (Γ (b))

and hence Γ(b)
Γ(b+c) >

Γ(a)
Γ(a+c) for all a > b, a, b, c > 0. Using (30), it follows thatB (a+ c, b) > B (a, b+ c) for all a > b,

a, b, c > 0, which proves the first part of the theorem. The proof of the second part is essentially the same, except that, as
a < b, Γ(b)

Γ(b+c) <
Γ(a)

Γ(a+c) , and soB (a+ c, b) < B (a, b+ c) for all a < b, a, b, c > 0.
We may now proceed to the proofs of theorems 9 and 10.
Proof of theorem 9:From (24), if p = q then, using (29) (and noting thatxΓ (x) = Γ (x+ 1)):

ep,p (0) = 1

Γ(2− 1
p )











1
k0,p(0) if p = 1
(

p−1

pc′p

1
p

)2
k

2
p−2,p(c′p;0)

k2p−2,p(c′p;0)
if p ≥ 2

=











1 if p = 1

(p−1)2

p2c′p

2
p

c′p

4−2p
p Γ2(1− 1

p )

c′p

2−2p
p Γ2(2− 1

p )
if p ≥ 2

=







1 if p = 1
(

1 − 1
p

)2 Γ2(1− 1
p )

Γ2(2− 1
p )

if p ≥ 2

= 1

But ep,q (ω) ≤ 1 by the Cramer-Rao bound [21], so optimal efficiency is achieved for ω = ǫ
σ

= 0. Henceǫopt = 0 is a
solution. �

Proof of theorem 10:Note thatep,q (ω) ∈ C2 for ω ≥ 0. Note also that the range ofω is ω ∈ [0,∞). If ǫopt = 0, and
henceωopt = 0, ep,q (ω) must have a (global) maxima atω = 0, which implies that the gradiente′p,q (ω) of ep,q (ω) must be
non-positive at0.7 Given this, to prove the theorem, it is sufficient to prove that the gradiente′p,q (ω) of ep,q (ω) at ω = 0 is
positive for all p > q (intuitively it may be seen that if the gradient is positive at zero then increasingω must result in an
increase inep,q (ω), and soω = 0 cannot be a maxima ofep,q (ω), global or otherwise).

Using (28), it is straightforward to show thate′p,q (ω) = dp,q (ω) ē′p,q (ω), where:

ē′p,q(ω)=



















e−c′pωp

− 2c′p
1− 1

pωp−1k0,p

(

c′p;ω
)

q = 1

1
p
k0,p

(

c′p;ω
)

− c′p
1
p e−c′pωp k2,p(c′p;ω)

k1,p(c′p;ω)
q = 2

c′p
1
p (q−1)

(q−2)

kq−2,p(c′p;ω)
kq−3,p(c′p;ω)

− c′p
1
p

k2q−2,p(c′p;ω)
k2q−3,p(c′p;ω)

q ≥ 3

(31)

7As ω = 0 is at the end of the rangeω ∈ [0,∞) it follows that if the gradient is negative atω = 0 then there will be a local maxima at that point.
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and:

dq,p (ω) =











































pc′p

1
p e

−2c′pωp

Γ(2− 1
p )k2

2,p(c′p;ω)
q = 1

2Γ( 1
p )

pΓ( 3
p )

k0,p(c′p;ω)k1,p(c′p;ω)
Γ(2− 1

p )k2
2,p(c′p;ω)

q = 2

2(q−1)2(q−2)Γ
3
2 ( 1

p )
p2Γ

3
2 ( 3

p )
. . .

. . .
kq−2,p(c′p;ω)kq−3,p(c′p;ω)k2q−3,p(c′p;ω)

Γ(2− 1
p )k2

2q−2,p(c′p;ω)
q ≥ 3

is a positive smooth function forω ≥ 0, p, q ∈ Z+. Hence if ē′p,q (0) > 0 for p > q ∈ Z+ thene′p,q (0) > 0 for p > q ∈ Z+,
which is sufficient to prove the theorem. Using (28), for allp, q ∈ Z+:

ē′p,q (0) =



















1 if q = 1

1
p
Γ

(

1
p

)

−
Γ( 3

p )
Γ( 2

p )
if q = 2

q−1
q−2

Γ( q−1
p )

Γ( q−2
p )

−
Γ( 2q−1

p )
Γ( 2q−2

p )
if q ≥ 3

(32)

Which proves the theorem in the caseq = 1. Consider the casep > q > 2. Writing q = 2 + m, p = 2 + m + n, where
m,n ∈ Z+, and using the resultxΓ (x) = Γ (x+ 1), if q ≥ 3:

ē′p,q (0) =
q−1

p
q−2

p

Γ( q−1
p )

Γ( q−2
p )

−
Γ( 2q−1

p )
Γ( 2q−2

p )

=
Γ( 2m+n+3

m+n+2 )
Γ( 2m+n+2

m+n+2 )
−

Γ( 2m+3
m+n+2 )

Γ( 2m+2
m+n+2 )

= Γ(a+b+c)
Γ(a)Γ(b) (B (a+ c, b) −B (a, b+ c))

wherea = 2m+n+2
m+n+2 > 0, b = 2m+2

m+n+2 > 0 and c = 1
m+n+2 > 0. As a > b, it follows from theorem 13 thatB (a+ c, b) >

B (a, b+ c), and hencēe′ (0) > 0, which proves the theorem for the caseq ≥ 3.
Suppose thatn (and subsequentlyq) is treated as a real number such thatn ≥ 0 (so q ≥ 2). The inequalityB (a+ c, b) >

B (a, b+ c) will still hold, as a > b for all n ∈ [0,∞), m > 0. Hence lim
q→2+

ē′p,q (0) > 0. Furthermore, using theorem 12:

lim
q→2+

q−1
q−2

Γ( q−1
p )

Γ( q−2
p )

−
Γ( 2q−1

p )
Γ( 2q−2

p )
= 1

p
Γ

(

1
p

)

−
Γ( 3

p )
Γ( 2

p )

which implies that:

ē′p,2 (0) = lim
q→2+

ē′p,q (0) > 0

and soē′p,q (0) > 0 for all p > q ∈ Z+. Hencee′p,q (0) > 0 for all p > q ∈ Z+, which proves the theorem. �

Using an analogous method, we can also give a partial proof ofconjecture 11:
Partial proof of conjecture 11: To prove thatǫopt = 0 it is necessary (although insufficient) to prove thatep,q (ω) has a local

maxima atω = 0. By analogy with the proof of theorem 10 it is necessary to prove that the gradiente′p,q (ω) of ep,q (ω) at
ω = 0 is non-positive for allp < q. From the proof of theorem 10,e′p,q (ω) = dp,q (ω) ē′p,q (ω), dp,q (ω) > 0, for all ω ≥ 0,
p, q ∈ Z+, where ē′p,q (ω) is given by (31). Hence, if̄e′p,q (0) ≤ 0, e′p,q (0) ≤ 0, and ep,q (ω) will have a local maxima at
ω = 0.

As 1 < p < q, q ≥ 2. If q = 2, p = 1, and hence by (32)̄e′1,2 (0) = −1. Thereforeep,2 (ω) has a local maxima atω = 0.
If q ≥ 3, writing q = 2 +m, p = 2 +m− n, wherem ∈ Z+, n ∈ {1, 2, . . . ,m+ 1}, it can be seen that ifp > q > 2:

ē′p,q (0) = Γ(a+b+c)
Γ(a)Γ(b) (B (a+ c, b) −B (a, b+ c))

wherea = 2m−n+2
m−n+2 > 0, b = 2m+2

m−n+2 > 0 and c = 1
m−n+2 > 0. As a < b, it follows from theorem 13 thatB (a+ c, b) <

B (a, b+ c), and hencēe′ (0) < 0. Therefore, in general,ep,q (ω) has a local maxima atω = 0 for all p > q ∈ Z+.
Now, if we could prove that this is aunique(and hence global) maxima, it would follow thatωopt = ǫopt = 0, which would

prove the conjecture. Alternatively, proving thate′p,q (ω) ≤ 0 for all ω ≥ 0 would demonstrate that the maxima atω = 0 is
global (although not necessarily unique) and thereby provethe conjecture. Unfortunately we have been unable to do either
rigorously, and so the proof remains incomplete. �
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