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Abstract

In the present paper we describe a new formulation for Support Meetpession (SVR), namely monomiatSVR. Like
the standard-SVR, the monomiab-SVR method automatically adjusts the radius of insensitivity (the tube wadltio, suit the
training data. However, by replacing Vapnikisinsensitive cost with a more general monomighsensitive cost (and likewise
replacing the linear tube shrinking term with a monomial tube shrinking tetime),performance of the monomiaSVR is
improved for data corrupted by a wider range of noise distributions. d%asf on the quadric form of monomiatSVR and
show that the dual form of this is simpler than the standa®VR. We show that, like Suykens’ Least-Squares SVR (LS-SVR)
method (and unlike standatdSVR), the quadria’-SVR dual has a unique global solution. Comparisons are made betiveen
asymptotic efficiency of our method and that of standarVR and LS-SVR which demonstrate the superiority of our method
for the special case of higher order polynomial noise. These thealretiedictions are validated using experimental comparisons
with the alternative approaches of standar8VR, LS-SVR and weighted LS-SVR.

I. INTRODUCTION

Support Vector regressors (SVRs) [1] [2] [3] are a class dfi-liwear regressors inspired by Vapnik’s SV methods for
pattern classification [4] [5]. Like Vapnik's method, SVRssfiimplicity map all data into a (usually) higher dimensid
feature space. In this feature space, the SVR attempts ttragh a linear function of position that mimics the relasbip
between input (position in feature space) and output okskiv the training data by minimising a measure of the emgtiric
risk. To prevent overfitting a regularisation term is in@ddo bias the result toward functions with smaller gradierfeature
space.

Two major advantages that SVRs have over competing methatdgdularised least-squares methods, for example) are
sparseness and simplicity [3] [6]. SVRs are able to give ateuesults based only on a sparse subset of the completadra
set, making them ideal for problems with large training skltsreover, such results are achievable without excessipgithmic
complexity, and use of the kernel “trick” makes the dual fasfrthe SVR problem particularly simple.

Roughly speaking, SVR methods may be broken n®VR [1] [2] and v-SVR methods [7] [8], both of which require
a-priori selection of certain parameters. Of particulaerast is thee (or v in v-SVR methods) parameter, which controls
the sensitivity of the SVR to presence of noise in the trginifata. In both cases, this parameter controls the threshold
(directly for e-SVR, indirectly forv-SVR) of insensitivity of the cost function to noise througke of Vapnik'se-insensitive
loss function.

The standard-SVR approach is associated with a simple dual problem, bfdrtunately selection of requires knowledge
of the noise present in the training data (and its variangeamticular) which may not be available [9]. Conversely, stendard
v-SVR method has a more complex dual form, but has the adwaulte selection of requires less knowledge of the noise
process [9] (only the form of the noise is required, not theavece). Thus both forms have certain difficulties assedatith
them.

Yet another approach is that of Suykens’ LS-SVR [10], whigeauthe normal least-squares cost function with an added
regularisation term inspired by Vapnik's original SV metdhd’he two main advantages of this approach are the simplicit
of the resulting dual cost function, which is even simplearth-SVR; and having one less constant to choose a-priori. The
disadvantages include loss of sparsity and robustnessisdlution. These problems may be ameliorated somewhaighro
use of a weighted LS-SVR scheme [11]. However, while thishmets noticeably superior when extreme outliers are ptésen
the training data, in our experience the performance of teighted LS-SVR may not be significantly better than the stahd
LS-SVR if such outliers are not present.

In view of the shortcomings of these approaches, we preserddification of Smola’s’-SVR method (monomial-SVR).
Our approach retains the feature thvatay be selected without knowledge of the variance of theenpissent in the training
data. For the special case of quadriSVR (second order monomiatSVR [12]), the associated dual optimisation problem
is simpler than the standatdSVR method. Furthermore, we show that quadri8VR method is able to out-perform both
standard/-SVR and LS-SVR (weighted or otherwise) in several casaseffample in the presence of higher order polynomial
noise).

We begin in section Il by reviewing the standarGVR method and its properties. Next, using the theory ofimam-
likelihood estimation as motivation, we present a modifigabf this method using a new monomiainsensitive cost function
(monomiale-SVR). Concentrating on the quadric form of this new costfion, we form the dual and show that it is no more
complex than the standardSVR dual. In subsection 1I-C we consider the asymptoticigificy of our method in comparison
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to the standard-SVR and LS-SVR. We also address the issue of seleetiogmaximise this efficiency. Finally, in subsection
[I-D, we analyze the sparsity of the various methods.

In section Il we further explore the properties of the sintd/-SVR method, and in particular its property of insensiyiuit
the variance of noise present in the training data. We thetydpe obvious extension of this approach to the monomaVR
formulation introduced previously to produce a monomigdVR method, and show that the dual form of the quadrBVR
is actually less complex than the dual form of the standa®VR. We then consider the problem of optimakelection for
both our method and standardSVR, and show that the property of noise variance inseftgitivhen selecting this constant
carries over from the standardSVR to monomialv-SVR. Finally, in subsection 1lI-C, we consider the issuespérsity for
the standard-SVR, monomialy-SVR and LS-SVR methodologies.

In order to gain a better “feel” for the problem, in section W& consider the particular case of training data affected by
polynomial noise of degreé < p < 6. In particular, we compare the theoretical efficiencies #r optimal values ot
and v for our method against other approaches. Finally, in secipwe consider a model problem where various orders of
polynomial noise are added to the training data, and comitereesults achieved here with our theoretical predictitkis
show that the results fit the prediction within tolerable lmecy. Moreover, we show that the predictions for the patame
provide a worthwhile “first guess” of the actual optimal valu

Il. e-SV REGRESSION

The regression problem may be formulated as follows. Givémiaing set:

0 = {(x1,21),(X2,22),...,(Xn,2N)}
€ Rir
2 € R

wherez; = §(x;) + noise for someg : R — R; andx; is drawn i.i.d. manner from an unknown distribution, constran
approximationg : %+ — R of §. An approximationg constructed for a given training sétis called a trained machine, and
the construction process training. We assume that all regsgeces (eg. measurement noise, system noise etc.) arehsmoo
i.i.d and zero mean.

In the SV approach [1], it is usual to define (implicitly, asliwie seen later) a set of functions; : R4 — R,
1 < j < dg, which collectively form a map from input space to featuraam ¢ : R¥ — R, where ¢ (x) =
(¢1 (%), 02 (X), ..., 04y (x)). Using this map, the trained machine is defined to be:

g(x)=wle(x)+b

which is a linear function of position in feature space. la4¢t8VR framework,w andb are selected to minimise the regularised
risk functional:

Ry (w,b) = iwlw + % > g (xi) = zil, (1)
(x4,24)€0O
where| . | =max (| . | —¢,0) is Vapnik's e-insensitive loss functione(> 0 is a constant). In this expression, the first term

(%wTw) characterises theomplexityof the modet while the second term is a measure of empirical risk assatiaith the
training set when this model is applied. The constant 0 controls the trade-off between empirical risk minimisati@nd
potential overfitting) ifC' is large and complexity minimisation (and potential undenfy) if C' is small.

An important property of (1) is that errors of magnitude l&sane do not contribute to the cosR, (w,b). Assuminge is
well matched to the noise present in the training data (areisge will return to shortly), this should lend a degree ofseoi
insensitivity to the cost function [1].

For convenience, (1) is usually expressed in terms of ngative slack variableg, £*. Using this notation, the primal
form of the e-SVR training problem is:

min | Ry (w,b,€.€) = IwTw+ $3° (6 +€0)
w,b,&, i=1
such that: (wlp (x;) +b) > 2, —e—§& (2)
_(W e (xi) + ) > —zi—€—§&
£ >0

For reasons of mathematical tractability, it is usual toldeih the dual of (2), which may be constructed as follows.
For each of the inequality constraints in (2) we associateraregative Lagrange-multiplier, respectively, o}, v; and~;
(1 <4 < N), noting that this gives a 1-1 correspondence between #ieirig pair(x;, z;) and the Lagrange multipliers;

lthe Iarger%wTw, the larger the gradient af (x) in feature space, and hence the mgrex) may vary for a given variation in inpuk



anda; for all 1 < i < N, and furthermore that at least one @f and o will be zero for all1 < i < N. Using the usual
techniques it is straightforward to show that the dual forfin¢2) is:

: ) 1 o\ T )
S L (") = 5 (a—a*) G(a—a)
(a—a’) z+e(a+a*)’1

such that: 0 < a < €1 @)

0<a*<f1

1T(a—a*)=0
where G, ; = K (xi,x;) = ¢ (x:) ¢(x;), and K : R x R4 — R is the kernel function associated with the map
@ : R — Rdu, The trained maching (x) may be written in terms of the kernel function:

9(y) =2 (e —f) K (xi,y) +b (4)

K2

The biasb is calculated indirectly, using the fact thatx;) = z; — ¢ for all ¢ such that0 < «; < C (and likewise
g (x;) = z; + € for all 4 such thatd < o} < C).

At no point during training or use of the trained machine iswtedge of the exact form of map : R — R4# required.
Only the kernel functionk : 9 x R — R is required, and any symmetric functidd : R% x R4 — R satisfying
Mercer’s condition [13] can be shown to be sufficient for thekt[4].

Noting that each training vector corresponds to one pair;, and that one of these will be zero for allwe may divide
our training vectors into three distinct classes, namely:

« Non-support vectorsy; = o =0, §{ =& = 0.

« Boundary vectorso; — af € [-$,$]\{0}, & =¢ =0.

« Error vectorsia; = $, & >00raf = £, & > 0.

Support vectors are any vectors which contribute to (4) Gah boundary and error vectors). We defiNg to be the
number of support vectors in the training saty the number of error vectors aniz the number of boundary vectors; so
Ng = Np + Ng. Non-support vectors are said to lie inside theibe, boundary vectors on the edge of thibe and error
vectors outside the-tube.

We will require the following theorem later:

Theorem 1:(Theorem 3.20, [14]): If the distribution from which the nseised outputgz1, 2, ..., zx } are drawn is smooth
then:
i 3 = i %

A. Monomiale-SV Regression

Consider (1) wherr = 0. If C' is sufficiently large, and assuming that the empirical riskon-zero, the second term (the

empirical risk term) will be much larger than the first terrhgtregularisation term). Hence, in this case:
Ry (w,b) = % > lg(xi) =zl
(xi,2;) €O

But this is just the Max-(log-)likelihood (ML) cost functiofor data affected by Laplacian noise [14]. It has been shown
[14] that, under certain assumptions given in section ItHe, optimal value,,, for e when the output is affected by Laplacian
noise is0. For other types of noise it is often found that. # 0, as the empirical risk component of the cost function does
not correspond to the ML cost in such cases. The presencallmiws us to achieve a degree of noise insensitivity eveagho
the cost function does not correspond the ML cost function.

The question raised by these observations is whether oneactégve better performance in the SVR for non-Laplacian
noise by modifying the primal cost function to match the Mlstéunction whenC' is large. However, when doing so we must
be mindful of the effect any changes may have on the matheabatactability of the problem, as mathematical simpjidg
one of the major strengths of the SV approach.

One variant of standard SVR which is known to have a partibulsimple dual form is Suykens’ least squares (LS) SV
method [10]. This uses the following modified primal costdtion:

Ris (w,b) = swlw + %( Z) . (9 (xi) — 2i)° (5)
Xi,%2i)€E

If C is sufficiently large the second (empirical risk) term instlekpression will be dominant. But the empirical risk term in
(5) is just the ML cost function for training data affected Gpaussian noise, so @' is sufficiently large therRys (w, b) will
correspond approximately to the ML cost function for tragidata affected by Gaussian noise. Hence one would expect th



LS-SVR to perform well in the presence of Gaussian noise. é¥ew if the noise is not Gaussian, the lackeghsensitivity
in the primal is likely to make the LS-SVR excessively samgito noise?

Motivated by this, we propose the following modification betstandard-SVR primal:

Ry(w,b)=gwiw+ 5 3 |g(x)—2l! (6)
(xi,z,-)ee
whereq € Z* is a constant. I{C is large ande = 0, the second (empirical risk) term will be dominant and heRgew, b)
will correspond approximately to the ML cost function forgdeeq polynomial noise, where polynomial noise of degreis
characterised by the density functiprir) = ce~%|7l", wherec, d > 0 are constants.

If ¢ =1, (6) reduces to the standatdSV cost function (1). Similarly, iff = 2 ande = 0, (6) reduces to primal form
of Suykens’ LS-SVR. However, like the standareSV cost function (1) (and unlike the LS-SVR cost function)(56)
incorporatese-insensitivity to achieve noise insensitivity when the émepl risk component of the cost function does not
match the noise process effecting the training data.

In terms of the usual slack variables, (6) may be written:

min R, (w,b —Ww—|— d 4 ¢rd
i Ry (w,b.6,€7) Z(E &)

w,b

such that: (w'p (x;) +b) > z; — e — & (7
(Wl (x;)+b) > —z—e— &
£, >0

We shall refer to a regressor of form (7) as a monomi&@lVR (as the empirical risk term is a monomial function of
Vapnik’s e-insensitive cost). Unfortunately, for the general case 2 the dual form of (7) is rather complicated [15]. For this
reason we will restrict ourselves to the special case 2 (quadrice-SVR), in which case it turns out that the dual problem
is mathematically “nice”.

Before we construct the dual form of (7) we show thai iE 2 the positivity constraintg, £* > 0 in (7) are superfluous,
giving us the simplified primal problem:

N
min Ry (w, b, ——w W_|__ 2 4 g2
i B (w.0.€.6) €+ &)

w,b i=1 (8)
such that: (whp (x;) +b) > 2z, —e— &

(Wl (x;)+b) > —z—e— &
We have the following theorems:
Theorem 2:For every solutionw, b, &, &%) of (8), &, 5
Proof: Suppose there exists a soluti¢w, b, €,£") of (8) such thatf; < 0 for somel < i < N. Then for all other
(w,b,&,¢") satisfying the constraints contained in (8 (w b,&,€%) = Ry (w, b, E E ) by definition.
Consider(w, b, &, £*), wherew = w, b=10, £* = £ an

13 {gj it i

otherwise
First, note that agw” ¢ (x;) +b) > z;—e—&;, w = W, b=, §; < 0and¢; = 0, it follows that (w7 (x;) +b) > z,—e—¢;.
Hence(w, b, &, £) satisfies the constraints in (8).
Second, note that: o
( 1b,€,€7) = Ry (w,b,¢,
, b,

(Wab7€a€ )<R2(

These two observations contradict the original assertian (tw, b€ €
of (8). Hence, for all solutionéw, b, &, £) of (8), € > 0.

with & < 0 for somel < i < N was a solution

The proof of the non-negativity of* follows from an analogous argument for the elements of teistor. ]
Theorem 3:Any solution (w, b, &, £¥) of (8) will also be a solution of (7) when = 2, and vice-versa.
Proof: This follows trivially from theorem 2. [ |

Using (8) it is straightforward to construct the dual form(@j wheng = 2 via the usual method. The dual is:
él:lgl* Ly(a,a*) = 1 (a— o) Ga—a*)+
YaTa+ Ca “Tog* —
(a—a ) z+e(a+a)
such that: a,a®* >0
1T (a—a*) =0

Tq )

2As an alternative to the approach presented here, thisgarobiay be tackled by usingweeightedLS-SVR method [11]. This involves using a two-step
process. First, a standard LS-SVR is constructed. Baselignateights are calculated for each training pair. Thesglte are subsequently used in a second
(weighted) LS-SVR, the training of which results in the med machine.



where G is as before. The trained machine takes the same form as (4. tNat the only constraints in (9) are positivity
constraints on the dual variables,anda*, and a single equality constraint. Furthermagg) = %a(*).

B. Training Issues
To clearly see the structure of the monomigdVR dual problem (9), it is instructive to re-express it aofvs:

T T
. o | « « «
such that: a,a* >0
1T (a—a*)=0

(10)

where:
G -G
Q= { ¢ G } + 21
| el—=z
STtz
Once we convert the problem into this form, it is essentitriljial to apply standard SVM training techniques (for exden
[16], [17]) to the problem. We also have the following usebubperty (which our formulation shares with Suykens’ LSFSV
method):
Theorem 4:The dual problem (10) has a unique global solution.
Proof: It follows from page 79 of [18] that in order to prove that (1)s a unique solution it is sufficient to prove that
Q is positive definite. Since we are using a Mercer kerelis positive semidefinite. Given that > 0, it follows that%l
G
-G
must be positive definite, and (10) must have a unique glatdatien. ]
As an aside, note that i& is not positive semidefinite to working precisio, may still be made positive definite using
the Levenberg-Marquardt [19] [20] method by choositigappropriately.

is positive definite. We also know that, f@ positive semidefinite,{ -G } must be positive semidefinite. Hen€g

C. Asymptotically Optimal Selection ef

In [14], Smola describes how, based on certain assumpttbasparametet may be selected in an “optimal” fashion for
the standard-SVR. While the assumptions made in this paper are not met &ySWR, experimental results suggest that
regardless of this the predictions made are reasonablyatecand certainly provide a useful “first guess” of the ot value
for . More importantly, Smola derives a relationship betweenwariance of the measurement noise and the efficiency of the
training machine if the machine is trained using a given

Smola’s (and our) assumptions are:

1) The training set is infinitely large.

2) The functiong estimated by the SVR converges to the actual relationghip

3) The general SVR model is replaced by an unregulariseditwcparameter estimator.

Mathematically, the third assumption is met in the liMiit — 0, C' — oo, and implies thaty (x) = b. Throughout the
present paper, these will be referred to as “the usual adsamsp

Following [14], assumé& = {z1, 22,..., 2y} iS drawn in an i.i.d. manner from some probability densitpdiion p ( z| )
with meané and variancer. Let § (Z) be an unbiased estimator fér The efficiencye of the estimator is defined to be [14]:

e = det (IB) "

wherel is the Fisher information matrix anB is the covariance matrix [14]. Loosely speaking, the higher efficiency, the
better the estimator (as there is less variance in the dstiofathe meary). By optimal selection ok, we mean choosing
e > 0 to maximise the efficiency. The value which achieves this maxima will be writtef,. The Cramer-Rao bound [21]
states that < 1.

For a single parameter estimator of the form:

0(Z)=argmin 3 d (z,é) (11)

0 2€Z

whered (z7 é) is a piecewise twice differentiable function éfthen, asymptotically ([22], lemma 3):

O
©

e =

~
Q



where [14]:

2
1= N[(2m5E0) p (2 0)d
z 2
G = Nf(%) p(z]0)dz

Q = Nf%p(d@)dz

Making the usual assumptions, the monomigbVR has form (11). That is:

wheref = b andq € Z*.

Define pyq (1) and gsta (7) to be,
distribution functions. That is:

Then, denotingy =

Consequently:

where:

€.

o

q

-0

d(z,é) — |2

respectively, the normalised (zero mean, unit vaepmnd symmetrised normalised

€

sta (T) = % (psta (1) + psta (—7))
pstd (2) = op(oz—0|0) (12)

2
I = N [ (alnpa::d(T)) Dstd (T) dr

02 J—c0o

*O0 z, 2
Njioo (W) p(z]|0)dz

2
a —
IRE = ECOTE

zER\[0—¢,0+¢€]

= Ng2a—2 / <%‘I—|:))2pstd (1) dr

TER\[—w,w]
= NG [ (r - )12 gy () dr

N [7 a2d(zﬁ)p(z|9)dz

—co 062

N I 0%d(|=—9].,) L (ﬂ) ds

8\2—9|§ o
zER\[0—¢€,0+¢€]
8%d(|r
Ngi—2 al(Tl‘z‘w)Pstd (r)dr
TES?\[fw(w]) « "
_ ifg=1
INg1—2 gstd (-UOO B )
7 { (g—1) fw (1 —w)? 2 Gsta (T)dT if ¢ >2

q,ftd(w) if =1
(%_J(;d (Iscd("')d‘") ) 4 (13)
T (qopp Y o) Panalodr) s o
T e g (yar) L 4E

2
Ioa = [~ (%) Psta (7) dT

is the efficiency of the monomiatSVR under the usual assumptions. Tdimalvaluee,,; of the parametet > 0 is defined
to be the value which maximizes this efficiency (thereby mising the variance in the estimate ©f

Defining:

Wopt = arg;nin ﬁ (14)

it is clear that maximum efficiency will be achieved by seitin= ¢, = wopto. This implies thatk,, is directly proportional

to the noise variance, where the constant of proportionality is dependent on ype tof noise. If the type and amount

(variance) of the noise are both known, (14) provides a resde basis for selecting(or at least a reasonable “first guess”).
If ¢ =2, (13) can be used to obtain the theoretical efficiency of 8ngkLS-SVR, under the usual assumptions, by setting

e = 0. For later reference, we defirgg to be this efficiency, i.e.:

_ 2 (5 asa(ndr)®
eLs = Ista (fo‘x’ Tzqsm(r)df) (15)



D. Sparsity of the monomiatSVR

As discussed previously, part of our motivation for deveigpthe framework for monomiad-SVR is Suykens’ LS-SVR
technique. Indeed, if’ is sufficiently large and the noise affecting measuremeaissian, LS-SVR corresponds approximately
to the ML estimator for the parametews andb. However, a downside of the LS-SVR approach is the lack ofssyain the
solution [10], where by sparsity we are referring here torthmber of non-zero elements in the vector o* or, equivalently
as N — oo (see theorem 1), the fraction of training vectors that ase aupport vectors. In the LS-SVR case, all training
vectors are support vectors, i s = N. While the sparsity problems of the LS-SVR may be overcomedegree using the
weighted LS-SVR approach [11], this approach is somewhatistec in nature, requiring some external arbiter (eitheman
or machine) to decide when to cease pruning the dataset. \dowy maintaining the-insensitive component of the cost
function, the need for such heuristics (at least at thisl lef@bstraction) is removed

So long ase > 0, we would expect that the solution — a* to the monomiale-SVR dual problem will contain some
non-zero fraction of non-support vectors. Under the usesalmptions, we have the following theorem:

Theorem 5:The fraction of support vectors found by theéSVR under the usual assumptions will, asymptotically, be:

Jim 5 =2 [ gua (7) dr

wherew = £.

o

Proof: Given that errors vectors are those for whiglix;) — z;|. > 0 (i.e. those lying outside thetube), using theorem
1 it can be seen that:

Jim s = Jim Y =Pr(g (0~ 9 (x)] > )
= Ik p(z]0)dz
zER\[0—¢€,0+¢€]
= [ psaln)dr
zeﬂ?(}o[fw,w]
=2 [ qsea (7)dr
wherew = €. [ |

g

Note that this implies that:

lim s =1
N—o0 N

as expected for LS-SVR. It also implies that any decreaseilikely to lead to a decrease in the sparsity of the solution
So, in general, if the training set is large theshould be chosen to be as large as possible while still maingaacceptable
performance to maximise the sparsity of the solution.

IIl. v-SV REGRESSION

The major drawback of-SVR is apparent in the relation,, = wopto. Specifically, selection of requires knowledge of
what type of and how much noise is present in the training aealfernatively we must have a specific intended accuracy to
use as a basis for selectiaj However, while we may have some idea of the type of noise aveexpect to be dealing with
for a given problem (and hence be able to calculajg ), we are unlikely to know how much noise will be present, isgv
o (and therefore,,,) uncertain.

To overcome this problem, Scholkopf et. al. [7] introducéeé v-SVR formulation of the problem, which includes an
additional term in the primal problem to trade-off the tubees(, no longer a constant) against model complexity and
empirical risk.

From [7], the primal formulation of the standardSVR training problem is:

N
min - Rip(...) = swiw+Cre+ £ (&6 +)

*

w,b,§,.§ € i=1

such that; (WT? (x;) +b) >z —e—& (16)
—(W cp(xi)er) >~z —e—§f
£, >0
€e>0

30f course, some heuristic input will still be required for leapproach, either far selection or when deciding how much compromise is acceptabiegiu
pruning. The advantage of the former is that there existratare criteria which may be used to seledii.e. optimal performance for a given noise model),
with sparsity properties being just a useful side affecthig thoice. If the dataset is very large, however, sparsity beaof primary importance, in which
case neither approach will have a clear advantage.



wherev > 0 is a constant. The associated dual is [7]:

mip L (@,0?) = (@ —a") Gla—a)-
(a—a*)'z
suchthat: 0 <a < €1 (17)
0<a*<f1
1T(a—a*)=0
1"(a+a*) < Cv

where G is as before.
We require the following theorem:
Theorem 6:(Theorem 3.20, [14]): For a-SVR trained with any training set of siz¥:

1) v is an upper bound on the fraction of error vectors.
2) v is a lower bound on the fraction of support vectors.

From this theorem we can immediately see that:

v= lim Y&

N—o0

A. Monomialv-SV Regression

We shall demonstrate shortly that there is a direct funefioelationship between and the theoretical efficienay (under
the usual assumptions) that is independent ofrhis means that it is possible to find,, to achieve maximum theoretical
efficiency without knowing the noise varianee(although the type of noise is still required). However, e we pay for
this is increased complexity in the dual formulation (1Pegifically the presence of a new constraiht,(a + a*) < Cv.
Also, like standard-SVR, the empirical risk component of the standar®&VR primal corresponds to ML only for Laplacian
noise. To deal with these issues, we introduce the folloviamghulation:

min, Ror ()= 3w W et 85 (¢4 €)

w,b i=1

such that: (w”p (x;) + )>zl—€—§i
el ) 2 —n g (18)
£,8 >
€e>0

whereq,r € Z* are constants. We shall refer to this as monomi@VR wheng = r. This reduces to the standardSVR
primal (16) if we choosey = r = 1. We will be concentrating on the cage= r = 2 (quadricv-SVR).
We have already shown in theorem 2 (which will hold here atka} the positivity constraint§, £* > 0 are superfluous

if ¢ = 2. We now show that the constraiat> 0 is also superfluous if = 2, giving us the simplified primal problem when
q=1r=2:

min Rpo(...)= %WTw—‘—%eQ—FQNZ (§2+§*2)

w,b,E,E" € i=1 19
such that: (wlep (x;) +b) > 2 —e— & 19
T

—(whe Xi)—l—b)Z—zi—e—f?‘

We have the following theorems:
Theorem 7:For every solutionw, b, £, &%, ¢) of (19), € > 0.
Proof: Suppose there exists a squt()w b€, €, €) of (19) such that < 0. Then:

fQ

€

R272 (W,B,§,§* E) :RQ,Q (V_V,B,E:,é;*, )
-~ Ra (W,b,€, . b,§,¢,

Furthermore, if the constraints in (19) are satisfied(fot b, €, £, €) they must also be satisfied féw, b,£,£",0). Therefore
(W,B,E,E*,E) does not minimis&R; » subject to the constraints and hence cannot be a solutich9pf\hich contradicts the
original assertion. So we conclude that every solutienbd, £, £",¢) of (19) must satisfye > 0. [ ]

Theorem 8:Any solution (w, b, &, £*, ¢) of (19) will also be a solution of (18) when= r = 2, and vice-versa.

Proof: This follows trivially from theorems 7 and 2. ]



It is not difficult to show that the dual form of (19) (and hend®) with ¢ = r = 2) is:

min Los(a,0) = 1 (o — o) G(a—a*)+
%V(a +a*)’ ZE(a+a*) -
yala +T%a*Ta*— (20)
(ax—a*) z

such that: a,a* >0
1T(a—a*)=0

whereE is a matrix where all elements ate The trained machine takes the same form as (4). Furthermore

e= 1" (a+ar)
£ = N

from which we see that:

R =

€ =

¥ lg(xi) -zl
N (x4,2;)€O (21)
Note that the only constraints in (20) are positivity coastts on the dual variablegy and a*, and a single equality
constraint. By comparison, the standar&VR dual (17) (which is otherwise of comparable complexitgs upper bounds on
these variables and an upper bound1dn(a + o).
For training purposes, note that (20) may be expressedidgadigitto (10) by setting:

G -G
Q:[—G G }+&E+%I

]
S =
VA
Like monomial e-SVR, this form will have a unique global minimum (to see thiste that the additional terrglruE is
positive semidefinite and therefore will not affect the dai of theorem 4).
Finally, note that in the limitv — oo it is clear from (21) that ify = r = 2, ¢ — 0. In fact, it is clear from the general form

of the monomialy-SVR (18) that as» — oo we must have: — 0 to ensure that the primal cost;  is finite. This implies
that in the limity — oo the form of the quadrie-SVR approaches the form of the LS-SVR.

B. Asymptotically Optimal Selection of

In section II-C, we showed that farSVR the theoretical efficiency is a function ofw = £. We now show that may
also be expressed (somewhat indirectly) as a function @haking the usual assumptions), independent af ¢ = r. The
advantage of this form is that, unlikg,, calculation ofv,y; (the value ofv which results in maximum efficiency) does not
require knowledge of.

Consider the regularised cost function in its primal form:

N
min = Ry, (...) = iwlw+ e + q% > (Er+ &)
wb & e i=1
such that: (WTcp (x;) + b) >zi—€e—¢

*(WTQO(Xq;) +b) > —zi—e—&F
£ >0
e>0

where the positivity constraints an &€ and£* may or may not be superfluous; andy € Z*. First, we note that:
N
ORg, » r— — i xq—1 0&]
e =C <V€ Ly % ; (53 1%—56 + &1 1%))
wheré':

e —1 otherwise

%:{O if g(x;) >z —eor(g(xi) =z —e¢de>0)
ag;_{() if g(x;) <z +eor(g(x;) =z +¢€de>0)

9¢ 7 1 —1 otherwise

4We have taken some liberties here when calculating this atéréy which is not actually well defined. However, the ratelange as is either increased
or decreased is well defined, which is what we are indicatieigg.h
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and hence:

Vﬁril_% q:1756<0
ORgr_ ver ™! — 5F ¢=10c>0
de N
ver—1 _ % D (5‘1 Ly & 1) otherwise
=1 22
Uer—l_% q:1,56<0 ( )
1 =
_c ver _TEN qg=1,0e >0
et — L 21 12 — g (x:)|2”"  otherwise
i=

We aim to select to arrive at a specifie. In order to achieve this, the optimality conditié?ﬁ;% = 0 must be met for
this particular value ot. In other words, ifg > 2 we require that:

v o=l (gq Lygrae 1)
N3

1—r 1 N T q-1
="y 1|zi—(w go(x,»)—i—b)’E

1=

Applying the usual assumptiong (x) = b, N — oc), we find that in all casés
v=gd" [le—r [ (r— W) gera (T)dT}
where, as usualy = £, andgsq (7) is defined by (12) . Iig = r then:
v =20 [ (7~ w)" g (7)dr (23)

This implies that if¢ = » thenv may be selected to achieve a particular efficiengy..; (assuming said efficiency is
achievable) by findingw required to achieve this and then substituting this intorgdevant expression far. At no point is
it necessary to use, so only the noise type is required.

Note that if we selecty = r» = 1, we can retrieve Smola’s original result [14]:

v=1—[" pga(r)dr

from which see that for a standardSVR if v = 1 then, in the limitV — oo, w = ¢ = 0.
Generally, if¢g = r then in order to achieve maximum efficiency we should choose:

-1
Vopt = 2wape jjm (T — wopt)?™ " gsta (T)dT

where: .
Wopt, = arg Min ;75
w

C. Sparsity of the Monomial-SVR
We have shown in theorem 5 that, under the usual assumptions:

Jim 5 =2 [ gora (7) dr

which is a 1-1 function (o > 0) if the distributiongs:q (7) is positive onr > 0. We have also shown in the previous section
that (again using these assumptionsy i » then from (23):
v = 2w f:c (1 — w)qfl Gsta (T)dT

which is also a 1-1 function (ow > 0) if gq (7) is positive onr > 0.
These two functions demonstrate that in general thereseaigtirect relation between the asymptotic valdé -G oo) of
the fraction of support vectors in the training set (and leetie sparsity of the solution) and the parametein general, the

5If ¢ = 1 then in the limitN — oo (22) becomes:
-1 _ . Ng f
. OR1. . ve” ngnoo ~ if de <O
N—oo O¢ ver~t— lim §Eif §e >0
N

which is well defined, as theorem 1 states t]rclhfn iNi = lim ﬁ For optimality,
— 00

N —oco

Rqr

= 0, and so using theorem 5 it follows that,df= 1:

v=ocgl-" [2w1_r f;o Qstd (T)dT]
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TABLE |
OPTIMAL < AND v FOR STANDARD AND QUADRIC (LABELLED (S) AND (Q), RESPECTIVELY) e-SVR AND v-SVR METHODS WITH POLYNOMIAL
ADDITIVE NOISE OF DEGREE] < p < 6, AND ASYMPTOTIC SUPPORT VECTOR RATIOS AT OPTIMALITY.

Polynomial degree|| 1 2 3 4 5 6 |
Optimal = (S) 0 061 112 136 148 1.5¢
Optimal v (S) 1 054 029 019 014 0.11

1 054 029 019 014 011

Jn % ©

optmal£(Q || 0 0 061 097 117 130
Optimal v (Q) 00 00 056 0.18 0.09 0.05
lim Y5 (Q) 1 1 059 039 030 023
N—oo

exact nature of this relation will be dependent of the formtaf noise process affecting the training data. In the speaise
qg=r =1 (i.e. standard-SVR), we see that:
v= 2f50 Gsta (T)dT
and so:
Ns

v= lim =2
N—oo N

which coincides with the asymptotic form of theorem 6.

IV. PERFORMANCE IN THEPRESENCE OFPOLYNOMIAL NOISE
To gain a better understanding of the method, we will considparticular example where the training data is affected by
additive noise that is polynomial in nature (this jncludeau@sian and Laplacian noise as special cases2 andp = 1
respectively). For polynomial noisg,:q (1) = c,e ™", p € Z+, where:

e — 1 p_ F3)
T rr) VTt

We will consider the related questions of optimal paramséection and sparsity, comparing Smola’s standa8VR, our
monomialv-SVR and Suykens’ LS-SVR method.

A. Asymptotically Optimal Selection efand v

Using (13) and (23) it is not difficult to show that under theualsassumptions, for a monomiatSVR, denoting the
efficiency of an orde; monomial SV R for a training set affected by polynomial noise of orgeaise, , (w) (under the usual
assumptions), and likewise the connection (23) betweandw asv, , (o,w):

e fg=1 ,

P T | () el g )

pc;)E -‘2‘7*2@(0?;“})

r*(3)

S = e (D) (29)
thal0.0) = |2 5T (0) 20

where we have defined: Lo )
T (Biw) = pB7 [ (T —w)™ e P dr o

= 3 (1) ()™ T (45 )
for m € Z\Z~ andp € Z*; andT (a, z) is the complementary incomplete gamma function [23]:
[ (a,z) = [Ztte tdt

Table | shows the optimal values ferand v for polynomial noise of degreé¢ < p < 6 for both standard and quadric
e-SVR andr-SVR (source [14]). Unsurprisingly, the optimal value fofor the quadrice-SVR in the presence of Gaussian
noise p = 2) is 0, as in this case the quadrieSVR primal and the maximum-likelihood estimator both taggroximately
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Fig. 1. Comparative inverse asymptotic efficiency vergusf standarde-SVR, quadrice-SVR and LS-SVR for polynomial noise of degrees< p < 6.
In all cases, the solid line represents the efficiency of quadSVR, the dotted line the efficiency of standar®VR, and the dashed line the efficiency of

the LS-SVR.

the same form ikt = 0 and C is large (just as,p, = 0 for standard-SVR in the presence of Laplacian noige=t 1)). Note
also that, for the cases represented in the ta3jg,> 0 for all p > ¢ andeqp, = 0 for all p < ¢q. Generally:

Theorem 9:Under the usual assumptions, given a set of training datctefi by polynomial noise of degrege= ¢ with
non-zero variance, the optimal value{ which maximizese) for the parametet as defined by (24) will be zero.

Theorem 10:Under the usual assumptions, given a set of training da&taefl by polynomial noise of degrge> ¢ with
non-zero variance, the optimal value,{, which maximizese) for the parametee as defined by (24) will be positive.

Conjecture 11:Under the usual assumptions, given a set of training datetaffl by polynomial noise of degree< ¢ with
non-zero variance, the optimal value{; which maximizese) for the parametet as defined by (24) will be zero.

The proofs for theorems 9 and 10, and a partial proof of cemjecll (which we have observed experimentally to be try
for all 1 < ¢ < 1000) may be found in appendix I.

Figure 1 shows the inverse asymptotic efficiency versusr both standard and quadréieSVRs, as well as LS-SVR. Note
that with the exception of Laplacian noise=£ 1) the optimal theoretical efficiency of the quadeiSVR exceeds the optimal
theoretical efficiency of the standateSVR. Also note that the efficiency of monomiaBVR methods exceeds that of LS-SVR
for all p > 2.

Finally, figure 2 shows the inverse asymptotic efficiencysusr for both standard and quadrieSVRs, as well as LS-SVR.
The important thing to note from these graphs is that, aljhahe range of is much larger for quadric-SVR methods than
for standardv-SVR methods, the efficiency itself quickly flattens out. lartgcular, although the theoretically optimal value
for Gaussian noise i8 — oo, it can be seen that even when= 1 the efficiency is very close to it's maximum,= 1. Also
note the comparative flatness of the efficiency curves fodqoa-SVR.

B. Sparsity Issues
In the case of polynomial noise, theorem 5 implies that fonamial SVRs:

. 2¢,

lim Ns = =27 (c;w
Nooo N pc/% U’p( P )
P

We have already observed that for monomigbVRs:

_ 20 1 /.
Vpg (W) = T a1 Tg-1,p (Cp’w)
pep' P

Or, in the two cases of particular interest (standare-(1) and quadric 4 = 2) v-SVR):

Vpa (w) = 26/71 To,p (C;ﬂ w)
p%,;‘ ' 1 /
Vp,2 (oj) = 'p% ;1171, (Cp; OJ)

)
pcp
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Fig. 2. Comparative inverse asymptotic efficiency versusf standardr-SVR, quadricv-SVR and LS-SVR for polynomial noise of degrees< p < 6.

In all cases, the solid line represents the efficiency of goad SVR, the dotted line the efficiency of standardSVR and the dashed line the efficiency of
the LS-SVR. Note that for all graphs thescale differs for standard and quadrieSVRs. For standard-SVRs, the actual setting far is one tenth of that
indicated on the x axis (for quadrie-SVRs, v is as indicated).

In the casey = 1, as expected, this implies:

The case; = 2 is slightly more complex, and best illustrated graphicallfe do this in figure 3, which shows our predictions
for the fraction of support vectors found as a functionvofor both standard and quadricSVR methods for polynomial
noise of degreé < p < 6. Note that the general shape of the curves is essentialhficdée in all cases. Generally, the fraction
of support vectors found by the quadrieSVR will increase quickly whilev is small and then level out, approachihgas
v — oo (as expected, given that the LS case correspondsmvithoo and treats all vectors as support vectors).

Table | gives the expected asymptotic ratio of support wsdim training vectors when is optimally selected for the usual
degrees of polynomial noise. On average, the results giveéhe table imply that quadrie-SVRs may require approximately
twice as many support vectors as standat@VRs to achieve optimal accuracy on the same dataset. Tdysbe understood
by realising that the act of extracting support vectors iseesally a form of lossy compression. The modifie¢cBVR is
(theoretically) able to achieve more accurate results gtandardv-SVR because it can handle more information (by using
less compression or, equivalently, finding more supportorsf before over-fitting (and subsequent degradation ifopaance)
begins.

V. EXPERIMENTAL RESULTS

Due to the restrictive assumptions made when deriving theltefor theoretical efficiency given in the preceding et
(which will, in the strictest sense, never be satisfied foy 8WR), it is important that we seek some form of experimental
confirmation of these results. This is our aim in the presentien.

For ease of comparison our experimental procedure is meatlelh that of [24]. We have numerically computed the risk
in the form of root mean squared error (RMSE) as a functiow ér both standard and quadricSVR methods, allowing
clear comparison between the two methods. We also competBMSE for Suykens’ LS-SVR, which is the limiting case of
quadricv-SVR asv — oo, and (non-sparse) weighted LS-SVR [11]. Plots of risk versare given for polynomial noise of
degreel < p < 6 to compare the theoretical and experimental results, anmtke gelevant results are given for the effect of
other parameters on thecurves.

Finally, we compare the sparsity of standard and quagi®VR for different orders of polynomial noise< p < 6, and
compare these results with the theoretical predictions.

As in [24], the training set consisted @00 examples(z;, z;) wherez; is drawn uniformly from the rangé-3, 3] and z;
is given by the noisy sinc function:

z; = sinc (z;) + ¢

TL;
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Fig. 3. Comparative asymptotic fraction of support vectorswer of standard and quadrie-SVR for polynomial noise of degrees < p < 6. In all
cases, the solid line represents the efficiency of modifi@VR and the dotted line standardSVR. Note that for all graphs the-scale differs for standard
and quadricv-SVRs. For standard-SVRs, the actual setting far is one tenth of that indicated on the x axis (for quadi&VRs,v is as indicated).

where(; represents additive polynomial noise. The test set catsist 500 pairs (x;, z;) where thex;'s were equally spaced
over the interval[—3, 3] and z; was given by the noiseless sinc functi@d0 trials were carried out for each result.

Quadricr-SVR, standard LS-SVR and weighted LS-SVR code for this erpnt was written in C++ and compiled using
DJGPP on a 1GHz Pentium Il with 512MB of memory, running Wing 2006. Experiments using standardSVR methods
were done using LibSVM [16].

By default, we set the parametér= 100 and noise variance = 0.5. In all experiments we use the Gaussian RBF kernel

llx—yll*

_ 1
function K (x,y) = ¢ *“kernel where202, . = 1 by default.

A. Additive Polynomial Noise

In our first experiment, we have used training data affectegddynomial noise of degregé < p < 6. Plots of RMSE for
standard/-SVR, quadricv-SVR, LS-SVR and weighted LS-SVR are shown in figure 4. With éixception of Laplacian noise
(p = 1), these results resemble the theoretical predictions shiowWigure 2. Note that the quadric SVR outperforms both
standardv-SVR and (weighted and unweighted) LS-SVR in all cases excaplacian noisey = 1).

Whilst the general shape of the RMSE curves closely resentideshape of the predicted efficiency curves, it is important
to note that the sharp optimum predicted by the theorypfor 4 (see figure 2) is not present in the experimental results.
Instead, the region of optimality is somewhat to the rightta$é and also somewhat blunter.

From an application point of view, this is actually an adem®, as it means that results are far less sensitive tttan
expected. Indeed, from these results we can empiricallytisatythe “sweet spot” for lies betweer).5 and1 for polynomial
noise of degre@ > 3 and anything above otherwise. But, roughly speaking, selecting= 1 will in all cases presented give
results superior to the standardSVR method and at least comparable to the LS-SVR methodie(bep > 3).

In the case of Laplacian noise the actual performance (mgef RMSE) of both the quadrie-SVR and the LS-SVRs are
better than that of the standardSVR, whereas theory would suggest that this should not bec#ise. We are unsure as to
why this anomaly occurs.

Figure 5 shows the ratio of support vectors to training vecfor both standard and quadrieSVRs as a function of.
These curves closely match the predictions given in figunré i8.clear from figures 4 and 5 that, as expected, the number of
support vectors found by the quadrieSVR is substantially larger than the number found by thedded-SVR. However,
this is still substantially less than the number of supp@tters found by the LS-SVR (which uses all training vectss a
support vectors).

B. Parameter Variation with Additive Gaussian Noise

In our second experiment, we consider the performance ofthedard and quadric-SVR in the presence of additive
Gaussian noise as other parameters of the problem (parlicul (the noise variance),’ and oye,vne1)- In particular, we wish

Scode available at http://www2.ee.mu.oz.au/pgrad/apsti/sv
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— quadric nu-SVR
-~ standard nu-SVR
- - LS-SVR

0.3 Weighted LS-SVR | - 0.3r 0.3

Fig. 4. Risk (RMSE) versus for sinc data with polynomial noise of degrees {1,2,3,4,5,6} working left to right, top to bottom (c.f. [24], figure 2).
In all casesg = 0.5, C' = 100 and QJﬁemel = 1. Note that for all graphs the-scale differs for standard and modifiedSVRs. For standard-SVRs, the
actual setting fow is one tenth of that indicated on the x axis (for modifie®&VRs, v is as indicated).

to see if the RMSE versus curve retains the same general form as these parameteraréd. v

The top row of figure 6 shows the form of the RMSE versusurve for a range of noise levels. In all cases the form of the
curves remains essentially unchanged. It will be noted,dvew that for the lowest noise case= 0.1) the standard-SVR
is able to out-perform the quadrieSVR. We are unsure as to why this occurs. Once again, sedecti> 1 gives reasonable
performance in all cases (c.f. Smola’s result for standa@VR [9], where the “optimal area” is € [0.3,0.8]).

The middle row of figure 6 shows the same curve with the noigéanee o fixed for different values ofC, namely
C € {10,100,1000}. Once again, the RMSE curve for quadrieSVR is roughly as predicted, and> 1 gives reasonable
results. In this case, = 10 provides an anomalous result.

Finally, in the bottom row of figure 6 , we give the RMSE versusurves when the kernel parameter?
These results follow the same pattern as for variatioa @ind C'.

It is interesting to note here that, while the RMSE versusurve obtained using the quadrieSVR fits more closely the
predicted curve than does the same curve for stande€B¥R when parameters are chosen badly, this does not imply th
the performance of the quadricSVR will necessarily be better than the standar8VR in this case. Indeed, the two cases
where other SV parameters (i.e. ngthave been chosen badly (i€.= 10 and203, ., = 0.1 in figure 6) are the two cases
where the standard-SVR most outperforms the quadricSVR. However, as one should continue to search until apjatiep
parameters are found, this should not be too much of a probigmactical situations.

| is varied.

erne

VI. CONCLUSION

In this paper we have reviewed the standard SVR techniquesSMR andv-SVR. Motivated by the relative merits and
demerits of these approaches, we then introduced a new, gereral form of SVR (monomiab-SVR). We proceeded
to investigate a special case of monomiaSVR (quadricv-SVR) in some detail and showed that the dual form of the
quadric »-SVR dual problem is significantly simpler than the standar8VR dual. We have compared the theoretical
asymptotic efficiencies of our proposed formulation adgaother SVR methods under certain restrictive assumptiGns.
investigation indicates that the quadrieSVR method not only shares the standar@VR method’s property of (theoretical)
noise variance insensitivity, but is also more efficient iany cases (in particular, when the training data is affedted
polynomial noise of degreg > 2). These predictions have been experimentally tested, antparisons have been made
between the performances of quadrieSVR, standardv-SVR, standard LS-SVR and weighted LS-SVR methods in the
presence of higher order polynomial noise. Based on thesdtsewe conclude that the theoretical predictions giveseful
insight into the characteristics of the various methodghBbeoretical and experimental results indicate thatquarance of
the quadricv-SVR method in many cases exceeds that of both stand®dR and LS-SVR.
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Fig. 5. Number of support vectors (out bf0 training vectors) versus for sinc data with polynomial noise of degrpec {1, 2, 3,4, 5,6} working left to
right, top to bottom. In all cases; = 0.5, C = 100 and 20 | = 1. The dotted line gives results for standaréSVR, while the solid line gives results
for quadricr-SVR. Note that for all graphs the-scale differs for standard and modifiedSVRs. For standard-SVRs, the actual setting far is one tenth
of that indicated on the x axis (for modified SVRs, v is as indicated).
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Fig. 6. Risk (RMSE) versug for sinc data with Gaussian noise (c.f. [24], figure 1). Thp tow shows performance for different noise variances,
o € {0.1,0.5,1} from left to right, with C = 100 and 2oﬁemel = 1. The middle row gives performance faf € {10,100,1000}, respectively, with
o =0.5and20Z | = 1. Finally, the bottom row shows performance far2 | € {0.1,1, 10}, respectively, withy = 0.5 andC = 100. Note that for

all graphs thes-scale differs for standard and quadrieSVRs. For standard-SVRs, the actual setting far is one tenth of that indicated on the x axis (for
quadricv-SVRs, v is as indicated).
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APPENDIX |
PROOFS OFTHEOREMS

In this appendix we give proofs for theorems 10 and 9, and @apgroof of conjecture 11. Before proceeding, however,
some preliminary results are required. In what follodigs(x, ) is the beta function[25]:

B (z,y) = 4%

It is straightforward to show that:

d v M, (Biw) i m>0
e T (i) = { pBre e’ if m =0 (28)

T (8;0) = 575 T (21) (29)
Theorem 12: hm al (ax) = 1 for all a > 0.
Proof: Usmg the Euler I|m|t form ofl" (z) [26], it can be seen that:

ol (a2) = o LTI, [(L+ )™ (1+22) 7]
and therefore hm ol (ax) = L.

]
Theorem 13:B(a+c,b) > B(a,b+c)foralla >b, a,b,c>0;andB (a+ ¢,b) < B(a,b+c) foralla < b, a,b,c > 0.
Proof: From [25], section 1.5, equation 5, it can be seen that:

B(a+cb) = gg;gB(mb—l—C)
O (30)
= L9 B(a,b+¢)

T'(a+c)
But the gradient), (z) of In (T" (x)) is a monotonically increasing function af> 0, and so for alla > b, a,b,¢ > 0:
L'(b)

In(C(a+c¢)—In(T(a)) >Wn(T(b+c)) —In(T' (b))
and hence— >

S btc) F(a+c) for all @ > b, a,b,c > 0. Using (30), it follows thatB (a + ¢,b) > B (a,b+ ¢) for all a > b,
a,b,c > 0, which proves the first part of the theorem. The proof of theoed part is essentially the same, except that, as
a<b, F(b_?c) < F(Fa(ﬂ) and soB (a + ¢,b) < B(a,b+c) forall a < b, a,b,c > 0. [ |
We may now proceed to the proofs of theorems 9 and 10.
Proof of theorem 9From (24), ifp = ¢ then, using (29) (and noting thafl (z) =T (x + 1)):

1

oM Tp=1
1
ep(0) = oy ) (=L Tan(ch0)
7 T ’ >
( ) pey, P -IZP’ZP(C%;O) Tp=2
1 ifp=1
_ / 7Tp 2(1_1
= (pz_/l); cpﬂr (1 11)) it p>2
vt o T ()
1 ifp=1

— 2 2 1
(1 - %) 7;&;; if p>2
=1

But e, 4 (w) < 1 by the Cramer-Rao bound [21], so optimal efficiency is adiefor w = £ = 0. Hencee,p,, = 0 is a
solution. [ ]

Proof of theorem 10Note thate, , (w) € C? for w > 0. Note also that the range af is w € [0 00). If €pe = 0, and
hencew,,: = 0, e, 4 (w) Must have a (global) maxima at= 0, which implies that the gradient, , (w) of e, , (w) must be
non-positive a.” Given this, to prove the theorem, it is sufficient to provet ttee gradient), , (w ) of epq(w) atw =01is

positive for allp > ¢ (intuitively it may be seen that if the gradient is positivezaro then increasing must result in an
increase ire, , (w), and sow = 0 cannot be a maxima af, ; (w), global or otherwise).
Using (28), it is straightforward to show thef , (w) = d, 4 (w) €, , (w), where:

e~ — 2c’p1_5wp_1_lo,p (ch;w) g=1
1 . 1 r,p o (c’ ;w) .

é;;,q(w): E-I()’p (c;,w) —cre”w¥ ‘il,:(cp,wg qg=2 (31)
o2 a=) Jomzw(epw) 4 a2 (cpiw)

/
= 7 >
P (q—2) jqu,p(c;;w) Cp _[24731;,(0;7;0.)) 7= 3

“As w = 0 is at the end of the range € [0, co) it follows that if the gradient is negative at = 0 then there will be a local maxima at that point.
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and:

pcl %e—2c;up

P =1

(2= 3)T,, (cw) ¢
202 ey T (o) o
d (w) pI‘(%) F(zle?)-l%,p(%’ )
P 2(a—1)*(a=2)r2 (3)

P (3)

-Iq,g,p(c;,;w)-iq,gwp(c;;w)-lgq,&p(cz’o;w) g>3

r 27%)-1311—2,1‘(5;7;“}) B

is a positive smooth function fav > 0, p,q € Z*. Hence ife, , (0) > 0 for p > q € Z* thene;, , (0) > 0 for p > q € Z7,
which is sufficient to prove the theorem. Using (28), forpaly € Z*:

1 ifg=1
1 1 r(s) P

& 0)=4 o' (;) e if =2 (32)
qg—1 %)_F(qul) ifng

Which proves the theorem in the cage= 1. Consider the casp > ¢ > 2. Writing ¢ = 2+ m, p = 2 + m + n, where
m,n € Z*, and using the resultl’ (z) =T (z + 1), if ¢ > 3:

o (0) = I T

P e (2
T 2m+n—+3 2m—+3
-
T b
= Tty Blated) = B(ab+0)
whereq = 25042 > (0, p = 2042, > ) andc = - > 0. Asa > b, it follows from theorem 13 thaB (a + ¢,b) >

n+
B (a,b+ ¢), and hence’ (0) > 0, which proves the theorem for the cage> 3.
Suppose that (and subsequently) is treated as a real number such that 0 (so ¢ > 2). The inequalityB (a + ¢, b) >

B (a,b+ ¢) will still hold, asa > b for all n € [0,00), m > 0. Hence lim+ €p.4 (0) > 0. Furthermore, using theorem 12:
q—2 ’

which implies that:

and soe,, , (0) >0 forallp>gqe 7. Hencee,, , (0) > 0 forall p > ¢ € 7, which proves the theorem. |

Using an analogous method, we can also give a partial proobojecture 11:

Partial proof of conjecture 11To prove thatk,,; = 0 it is necessary (although insufficient) to prove that (w) has a local
maxima atw = 0. By analogy with the proof of theorem 10 it is necessary toverthat the gradient;, , (w) of e, , (w) at
w = 0 is non-positive for allp < q. From the proof of theorem 1@,, , (w) = dp 4 (W) €, , (W), dpq (w) > 0, for all w > 0,
p.q € Z*, wheree],  (w) is given by (31). Hence, it} , (0) <0, e, ,(0) <0, ande, , (w) will have a local maxima at
w=0.

Asl<p<gq,q>21f ¢g=2,p=1, and hence by (32J] , (0) = —1. Thereforee, > (w) has a local maxima at = 0.
If ¢ >3, writing g =2+m, p=2+m —n, wherem € Z*, n € {1,2,...,m + 1}, it can be seen that jf > ¢ > 2:

€ (0) = 5207 (Ba+e,b) = B(a,b+c)

p,q

whereq = 28=42 > (, b = 21420 > ) andc = —L— > 0. Asa < b, it follows from theorem 13 thaB (a + ¢,b) <
B (a,b+ c), and hence’ (0) < 0. Therefore, in generak,, , (w) has a local maxima at =0 for all p > g € Z+.

Now, if we could prove that this is anique(and hence global) maxima, it would follow thag,, = e,pt = 0, which would
prove the conjecture. Alternatively, proving thgt, (w) < 0 for all w > 0 would demonstrate that the maximadwat= 0 is
global (although not necessarily unique) and thereby ptheeconjecture. Unfortunately we have been unable to dereith

rigorously, and so the proof remains incomplete. |
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