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Abstract— The proposition posed by the problem of simul-
taneous localisation and map building (SLAM) is whether
a mobile robot can be placed in an unknown environment
and then incrementally build a map of this environment,
while using the map to determine its globally referenced pose.
The various solutions to the SLAM problem that have been
proposed so far, such as the extended Kalman filter (EKF),
are typically highly theoretical and require rigorous modeling
of the robot’s locomotion mechanism, sensor errors and the
environment. These motifs have encouraged a long string of
simplifying and often wishful assumptions, which invariably
restrict the application of SLAM to only a contrived figment
of the real world. While using a plethora of assumptions may
be academically acceptable, a change of tack is needed for
real-world operation.

In this paper, a novel SLAM solution is proposed that is
based on perpetually solving the kidnapped robot problem. By
doing so, the locomotive specifics of the robot are irrelevant
and, hence, the robot can be engineered to be as flexible and
robust as practicable without contemplating the possible side
effects on odometric accuracy and associated measurement
drift. While the proposed solution does not require odometry
(nor does it assume motion continuity), it makes provisions
for the inclusion of such information, in possible combination
with inertial sensors, to improve the system’s performance
while not compromising its generality.

The solution comprises a multiple-hypothesis data
association algorithm for recognising map landmarks
perceived from different viewpoints, and a simple relative
error algorithm for representing and handling the positional
uncertainties of the robot and landmarks. The latter
algorithm is based on the sole premise that the positional
uncertainty is directly proportional to the radial distance
from the origin. This paper argues that the proposed solution,
while atypical, facilitates navigation in natural environments.
Practical results from several outdoor experimental trials
will be published shortly.

Index Terms— Autonomous robot navigation; SLAM; lo-
calisation; environment mapping; kidnapped robot problem

I. INTRODUCTION

Simultaneous localisation and map building (SLAM) is
the process of concurrently building a landmark based map
of the environment and using this map to ascertain the
robot’s absolute pose. Initially, the robot starts at an un-
known location in an a priori unknown environment. It then
uses its onboard sensors to observe the local landmarks,
and from this information, computes its own pose while
simultaneously estimating the locations of these landmarks.
As the robot moves through the environment, its changing

observational viewpoint enables the incremental building
of a complete map of landmarks, which are continuously
exploited to track the robot’s current pose relative to its
initial pose.

In mathematical terms, the objective of SLAM is to
estimate the system state xk at discrete time instant k, given
by

xk =


xrk

x1

...
xn

 (1)

where xrk
is the robot’s state and the set M = {xi | 1 ≤

i ≤ n} represents the map of observed landmarks. Notice
that the landmark states xi are not given as a function of
time, as they are generally assumed to be stationary. Mov-
ing environmental features are consequently disregarded as
unwanted noise, however, they can still be useful to the
SLAM process, especially if their movement is predictable,
intermittent, or negligible within a sparse environment.

For a 2D Cartesian based map, the robot’s state can be
defined by its pose (position and orientation) in space

xrk
=

 xrk

yrk

θrk

 (2)

relative to a global reference frame, as shown in Fig. 1.
The landmarks in the map M are commonly represented
as points in space and therefore their states may be defined
by

xi =
[

xi

yi

]
. (3)

However, the equations (2) and (3) vary according to
the robot’s intended application and the particular SLAM
strategy used.

Now that a definition of SLAM has been given, what
makes the practical operation of SLAM a problem? The
answer to this question, as discussed in [1], lies in the
difficulty of coping with three distinct forms of uncertainty:

• Data association uncertainty
• Navigation error
• Sensor noise
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Fig. 1
ROBOT COORDINATE SYSTEM

Data association uncertainty occurs due to the robot’s
inability to properly identify a landmark perceived from
different poses as the same. Therefore there exists the
possibility that the robot wrongly associates landmarks,
thereby corrupting the map. This problem is generally
referred to as either the data association problem or corre-
spondence problem [2, 3]. The second form of uncertainty,
i.e., navigation error, is caused by the inevitable divergence
between the robot’s assumed motion via the vehicle model
and its actual motion. This divergence can lead to an
accumulative error in the robot’s estimated pose as well
as exacerbate the data association problem. The final form
of uncertainty is the result of imperfect sensing devices, the
measurements of which are inherently noisy and sometimes
completely erroneous.

Together, these uncertainties culminate into a complex
SLAM problem, one which some behaviourists believe
is not worth solving [4]. Their argument is that humans
and animals can navigate perfectly well without precise
quantitative knowledge of their location, so why should
their mechanical counterparts need to perform SLAM?
A rebuttal to this argument is that there are a range of
useful applications such as cross-country and interplanetary
exploration, undersea navigation and mining where the
robot needs to track its precise position over a long-term
period without the aid of an a priori map or artificial
infrastructure [5]. By using SLAM, the robot is able to
navigate efficiently and purposefully within its a priori
unknown environment, while strategically carrying out its
mission. In fact, some researchers go beyond this conser-
vative view by stilting the solution to the SLAM problem
as the cornerstone or “Holy Grail” of robot autonomy
[6]. For these reasons, the SLAM problem has received
a considerable amount of research attention, and judging
by its dominant discourse at international conferences, the
number of active researchers in this area is growing rapidly.

A number of methods have been proposed to solve the
SLAM problem, each with relative strengths and practical
limitations. Section II provides a review of these methods
and delves into some of the more notable instances, such as
the extended Kalman filter (EKF) and particle filter based
approaches, for a look into their inner workings. From
this review, it is apparent that the predominant downside

of these methods is their reliance on stringent models
of the robot, its sensors, and the environment (i.e., the
supporting medium through which the robot locomotes
and the observable features). The roboticist (or engineer)
implementing one of these methods then has the dubi-
ous task of modeling these aspects, while appropriately
constraining the aforementioned uncertainties so that the
model boundaries remain intact. The intractable real-world,
however, is not amenable to such artificial boundaries; and
the more rigid the models, the tighter these boundaries
become. So, to achieve some semblance of reliability, it has
become common practice to manufacture the robot and its
operating world in such a way that they are submissive
to the modeling process. Therefore the models entice
contrivances which are detrimental to real-world operation.

In Section III, a new SLAM solution is proposed that
moves away from the classical ideal of modeling and pre-
planning for the purpose of gaining system generality and,
consequently, robustness and flexibility when deployed in
the real-world. This solution is based on perpetually solving
the kidnapped robot problem [7], which is defined as the
problem of re-localising a mobile robot after its undergone
an unknown motion or, in figurative terms, been kidnapped
and clandestinely placed at an unknown location. The
kidnapped robot problem is typically considered in the
context of a one-off, unwanted navigation event that needs
to be first detected and then resolved. However, in this
case, it is assumed to be continuously occurring over time,
and by perpetually solving such a problem, the specifics
of the robot’s locomotion mechanism becomes irrelevant.
So, whether the robot locomotes via wheels, tracks, limbs,
or one of the recent self-reconfiguring designs [8, 9, 10],
has no bearing on the working operation of the proposed
SLAM solution.

Several other important outcomes are also realised.
Firstly, odometry and an associated vehicle model are not
required, and so this solution is not vulnerable to the
large non-systematic errors [11] which can occur from
the physical interaction between the robot and its environ-
ment (e.g., outdoor surface irregularities causing a robot’s
wheels to slip or unpredictable undercurrents acting on a
submersible). Another important outcome is that there is
no assumption of continuity in the robot’s motion, i.e., xrk

is not constrained by xrk−1 . This means that the SLAM
process is essentially decoupled from the robot itself and,
ergo, has a similar flexibility to the Global Positioning
System (GPS) in terms of a standalone black-box device.
The difference being that instead of communicating with
orbiting satellites like a GPS receiver, the proposed solution
functions by sensing the local environment.

However, purposely disregarding odometry and the con-
straints imposed by the robot’s locomotive mechanism is an
extreme approach to SLAM that may seem illogical, espe-
cially if this information is readily available. In rebuttal to
this, the proposed solution only disregards this information
in lure of its generalised applicability to an arbitrary robot,
regardless of the robot’s suitability to modeling. But in a
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context specific situation, however, provisions have been
made for the inclusion of any available dead-reckoning
information from odometry and possibly inertial sensors
(gyroscopes and accelerometers) in the SLAM process.
This information can be added at will, with varying degrees
of accuracy, to improve the system’s performance charac-
teristics without the repercussive effect of it becoming a
point of vulnerability. That is, regardless of whether dead-
reckoning information is added, the proposed solution is
still fundamentally based on solving the kidnapped robot
problem and so it is only vulnerable to its authoritative
reference – the environment – and not the robot itself.

The proposed solution consists of two subsystems:
multiple-hypothesis data association and positional error
representation and handling. While the solution from a
holistic perspective is novel in itself, these subsystems are
also novel in their approach and methods. The multiple-
hypothesis data association subsystem is used to match
landmarks perceived from different robot locations and,
correspondingly, address any uncertainty or ambiguity that
results from the matching process. The other subsystem
is used to maintain the positional errors of the robot and
landmarks. Both subsystems are presented in detail.

Finally, Section IV concludes the paper with some of the
many directions for future research. Since the presented
solution is original, it lacks the years of development
afforded to the classical approaches, like the EKF, and
so numerous extensions are possible as well as rigorous
comparative studies and analyses. It is argued that the
solution’s generality warrants such investigation.

II. RELATED WORK

This section reviews the current state of the art in solving
the SLAM problem. At present, there are too many ap-
proaches to solving this problem, and too many extensions
and subtleties within each approach, to review all of them
in any great detail here; so only the more notable instances
will be considered. While we acknowledge that this form
of selectivity has a subjective connotation, the aim of this
review is to just give a well-rounded overview of the area
and highlight some of the current limitations that exist,
especially with regard to real-world operation.

The various approaches will be compared on the basis of
several key properties. These properties may include, for
example, the map representation (e.g. Cartesian landmark
locations, occupancy grid, or polygons); the representation
of uncertainty in the map (e.g. Gaussian / mixture of Gaus-
sians, maximum likelihood, or a particle set); restrictions
on sensor noise; optimality of convergence; computational
complexity; accuracy (with respect to ground truth); gen-
erality / applicability; robustness to unmodeled events (e.g.
large non-systematic motion errors, dynamic environmental
features, or incorrect data association); and whether the
map is incrementally built, and if so, the consistency of
the resultant map.

A property that is rarely, if ever, mentioned in the litera-
ture is the required academic competence of the roboticist

implementing the approach. Since highly theoretical ap-
proaches can be complicated and time-consuming to imple-
ment by roboticists who are not au fait with the underlying
principles involved, this property will be discussed here
under the umbrella of “ease of implementation”. Another
factor affecting the ease of implementation is the amount
of preparatory analysis required to fulfill an approach’s
prerequisites (e.g., model parameters). Approaches that are
relatively easy to implement with little preparatory work
will be considered better than those that lean towards the
opposite way, all else being equal. This may seem obvious;
however, complicated approaches can offer their inventors
the power of exclusivity, which will not be considered an
advantage here.

The review begins with what is currently the most
popular approach: the EKF. This approach will be used as
a benchmark for comparison between the other approaches.

A. The Estimation-Theoretic Approach
The estimation-theoretic or extended Kalman filter

(EKF) based approach was first introduced by Smith,
Self and Cheeseman in their seminal paper [12], which
described the use of an EKF [13] to build a stochastic
map of spatial relationships. This work was extended
shortly after by Moutarlier and Chatila [14], who took
into account the correlated noise between landmarks in
the map to preserve the filter’s consistency. Leonard and
Durrant-Whyte [15]1 then implemented it using an indoor
mobile robot equipped with sonar sensors. Since then,
a considerable amount of progress has been made in
the development of the EKF based approach, including
such contributions as its application to different domains
[16, 17]; the use of various sensors [18, 19]; proofs of
its convergence properties [6] or lack thereof [20]; and
methods that somewhat address its high computational
complexity of O(n2) [21, 22, 23, 24, 25].

The mathematical framework of the EKF is based on a
state space representation of the robot and its environment.
In presenting the mathematical framework here, the system
state vector xk given in Section I will be used and several
models will be introduced. The first model, called the
system plant model, describes how the system states change
as a function of time k and is conventionally written as a
non-linear state transition equation of the form

xk = f(xk−1,uk) + vk (4)

where uk represents the control input asserted in the
time interval (tk−1, tk], vk denotes temporally uncorrelated
Gaussian noise with zero mean (E[vk] = 0,∀k) and
covariance Qk, and f(·, ·) is a non-linear function that
maps xk−1 to xk given uk. Similarly, a robot or vehicle
model is used to capture the robot’s progression from its
previous state, xrk−1 , to the next, xrk

, as determined by
its kinematics, and can be written as

xrk
= fr(xrk−1 ,urk

) + vrk
. (5)

1The origin of the phrase “simultaneous localisation and map building”.
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Assuming that the landmarks in the map M are station-
ary, the landmark model is trivially

xi, k = xi, k−1 (6)

and therefore the dynamics of the system is confined to the
robot model. During the robot’s motion, it uses an onboard
sensor, or a multisensor arrangement [26], to observe the
local landmarks and measure their relative position. This is
represented by an observation model where the observation
at time k, denoted zk, is expressed in the form

zk = h(xk) + wk (7)

where wk is a random vector of temporally uncorrelated
measurement noise with zero mean (E[wk] = 0,∀k) and
covariance Rk, and h(·) is a non-linear function that
models the relationship between the observation of system
states and the states themselves.

Based on the system and observation models given in
(4) and (7), respectively, the EKF fuses all the available
information about the system’s state to compute a state
estimate with minimum mean-squared error (MMSE). This
is accomplished through a recursive, three-stage cycle
consisting of prediction, observation, and update steps [27].

Since the EKF equations [13, 28] that make up these
steps have been widely published with many notational
nuances, the notation used to present them here will be
briefly described first. The notation x̂−

k represents the a
priori state estimate at time k or, in other words, the state
prediction derived from information up to time k− 1 (i.e.,
x̂−

k = x̂k | k−1). Conversely, x̂+
k represents the a posteriori

state estimate at time k and therefore is conditioned on
information up to this time (i.e., x̂+

k = x̂k | k). Note that
the ‘ + ’ and ‘ − ’ superscripts will also be used for other
state variables to convey the same meaning.

1) Prediction: The first step of the filter involves gen-
erating predictions of the system’s state x̂−

k , its covariance
P−

k , and the observation ẑ−k at time k. These predictions
are calculated as follows:

x̂−
k = f(x̂+

k−1,uk) (8)

ẑ−k = h(x̂−
k ) (9)

P−
k = ∇fxk−1P

+
k−1∇fT

xk−1
+ Qk (10)

where ∇fxk−1 ,
∂f
∂x

∣∣∣∣
(x̂+

k−1,uk)

(11)

The Jacobian ∇fxk−1 , defined in equation (11), is derived
from linearising the non-linear function f through a
first-order Taylor series expansion about the point of
x̂+

k−1. Also, note that equation (10) does not take into
account the uncertainty in the control inputs uk, however,
this can be remedied by adding the term ∇fuk

Uk∇fT
uk

(where Uk is the control covariance) to the right side of
this equation.

2) Observation: After the robot makes a partial obser-
vation zk of the true landmark states in xk, the innovation
νk is calculated using

νk = zk − ẑ−k (12)

under the assumption of perfect data association. The
corresponding innovation covariance Sk is calculated as
follows:

Sk = ∇hxk
P−

k ∇hT
xk

+ Rk (13)

where ∇hxk
,

∂h
∂x

∣∣∣∣
x̂−k

(14)

Similar to the Jacobian ∇fxk−1 described earlier, the
Jacobian ∇hxk

is a linearisation of the observation
function h.

3) Update: The final step involves updating the state
estimate x̂+

k and its covariance P+
k according to the fol-

lowing equations:

x̂+
k = x̂−

k + Wkνk (15)
P+

k = P−
k −WkSkWT

k (16)

where the Kalman gain Wk is given by

Wk = P−
k ∇hT

xk
S−1

k (17)

Overall, this filter provides a theoretically sound solution
to SLAM and a means of systematically studying its
convergence properties, the evolution of the map, and the
propagation of positional uncertainties. However, from a
practical standpoint, there are several issues that adversely
affect its applicability. To begin with, the approximation
errors caused by linearising the system and measurement
functions can lead to filter instability and an inconsistent
map [20, 29], especially if the time step interval ∆tk
(where ∆tk = tk − tk−1) is not sufficiently small. Julier
and Uhlmann partially solved this problem by introducing
the unscented Kalman filter (UKF) [30], which tends to be
more suited to highly non-linear functions than the EKF.
However, both of these extensions to the standard Kalman
filter are still limited by their inherent assumptions, such
as Gaussianity and independence of model errors, which
realistically may not hold true.

Another limitation of the EKF is that landmarks need
to be uniquely identified by the data association process.
For instance, it is not enough to just be able to recog-
nise that a certain percept is a tree, the tree has to be
matched to its corresponding landmark state in the map.
Since data association is commonly performed using the
gated nearest-neighbour (NN) algorithm [2], this type
of identification becomes increasingly more unreliable as
environmental clutter or uncertainty in the robot’s estimated
state x̂−

k grows. This can cause false data associations,
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which then often lead to catastrophic failure [27]. However,
the likelihood of this happening can be reduced by applying
a more robust data association technique such as the joint
compatibility test [31] or the graph theoretic approach [32].
Ambiguous observation data can also be better handled
using multiple hypothesis tracking (MHT) [33, 34], which
maintains each possible interpretation of the data over time
using multiple, probabilistically weighted, maps. These en-
hancements, however, add to the computational complexity
of the EKF.

Lastly, the biggest problem with the EKF is arguably its
reliance on stringent models to satisfy its predictive behav-
iour. This reliance means that the operational performance
of the EKF is extremely specific to the extent of which the
robot and its environment are predisposed to the modeling
process. Consequently, the robot designs and environments
that cannot be easily modeled or manipulated are often
avoided, and those that can are tightly bounded with little
tolerance for the unknown. There are other probabilistic
approaches to SLAM that are not as rigid.

B. Other Probabilistic Approaches
To begin to describe these other approaches, it is worth-

while to look at the SLAM problem from a probabilistic
point of view. The SLAM problem in this context is
considered to be a density estimation problem where the
solution involves finding the joint posterior probability of
the robot’s pose xrk

and map M at time k. This posterior
can be written as

p(xrk
,M | z0 : k,u0 : k) (18)

where z0 : k and u0 : k represent the observation and con-
trol history, respectively. For notational convenience, this
posterior will be denoted bk(xrk

,M) from this point on,
and correspondingly referred to as the robot’s belief state
at time k.

The probabilistic SLAM approaches, including the EKF,
predominantly estimate the belief bk(xrk

,M) using some
form of Bayes filter [35] (which is a temporal exten-
sion of the archetypical Bayes rule [36]). In doing so,
they often treat the SLAM problem as a Markov process
through which it is assumed that the current belief state,
bk(xrk

,M), depends only on the immediately preceding
state, bk−1(xrk−1 ,M), independent of how the preceding
state was reached. The belief probability can therefore be
calculated recursively, as shown by the generic Bayes filter:

bk(xrk
,M) = η p(zk |xrk

,M) ·∫
p(xrk

|xrk−1 ,uk) bk−1(xrk−1 ,M) dxrk−1 (19)

where η is a normalisation constant, p(zk |xrk
,M) is a

probabilistic measurement model, and p(xrk
|xrk−1 ,uk) is

a probabilistic motion model.
However, there are several problems with implementing

equation (19) in its generic form. To begin with, the poten-
tially high dimensionality of the map can make the estima-
tion of the belief bk(xrk

,M) computationally intractable.

This is difficult to avoid in practice, as the number of
landmarks in the map can easily be in the order of hundreds
or even thousands. In addition, the belief function is hard to
factorise due to the uncertainty in the robot and landmark
positions being intricately intertwined [12, 14]. The need
to maintain these intricate correlations only complicates
the task of addressing the high computational complexity.
Another problem to consider is that the full posterior over
a continuous space possesses infinitely many dimensions,
which cannot be represented by a digital computer [37].

Thus, working instantiations of Bayes filter are the
product of additional assumptions and approximations. It
is primarily these assumptions, along with their implica-
tions, that differentiate the currently existing probabilistic
approaches. The type of assumptions adopted shape the
strengths and limitations of each approach, which will
become apparent in the following reviews.

The expectation maximisation (EM) approach, proposed
in [38], solves the SLAM problem by estimating the mode
of the posterior p(M | z0 : k,u0 : k) (also denoted bk(M)
for notational convenience) to find the most likely map
M∗, along with the most likely path taken by the robot.
Formally, this can be expressed as solving the maximum
likelihood (ML) estimation problem

M∗ = argmax
M

bk(M). (20)

The posterior bk(M), based on the derivation given in [38],
can be written as

bk(M) =
∫

bk(xrk
,M) dxrk

∝
∫
· · ·

∫ k∏
j=0

p(zj |xrj
,M) ·

k∏
j=1

p(xrj
|xrj−1 ,uj) dxr1 . . . dxrk

(21)

where the robot’s initial pose is, arbitrarily, set to xr0 =
[0 0 0]T . This equation is void of any constants, normal-
isation or otherwise, as the objective is to only maximise
the posterior bk(M), not to calculate its true value.

The main problem with solving equation (20) is the
high computational complexity. The maximisation of the
likelihood function, defined in equation (21), involves
searching in the space of all maps, and in each map,
integrating over all possible poses at every instant in
time. Since this is generally not feasible, an optimisation
technique that performs local hill-climbing in likelihood
space is used. This technique, based on the classical
EM algorithm [39, 40], involves iterating two steps: an
expectation step, or E-step, and a maximisation step, or
M-step.

1) E-step: In this phase, probabilistic estimates for the
poses xr0 , . . . ,xrk

are calculated based on the currently
best map M and data D0 : k (where D0 : k = {z0 : k,u0 : k}).
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This can be considered a low-dimensional localisation
problem, which is solvable using standard Markov
localisation [41]. However, there is a slight difference
that needs to be considered. Each posterior p(xrj

|D0 : k)
is estimated using the data from the entire time interval
{0, . . . , k}, which requires two localisation passes: one
forwards in time, giving p(xrj |D0 : j), and the other
backwards in time, giving p(xrj

|Dj+1 : k).

2) M-step: The maximisation step involves calculating
the most likely map M∗ based on the pose estimates ob-
tained in the E-step. In essence, this is a map optimisation
problem whereby the robot’s poses xr0 : k

are treated as
latent variables. As given in [35], the map M∗ is calculated
by maximising the expectation over the joint log-likelihood
of the robot’s path xr0 : k

and data Dj+1 : k:

M [γ+1] =
argmax

M
E[log p(xr0 : k

, D0 : k |M [γ]) |D0 : k] (22)

Here the superscript ‘ [γ] ’ denotes the iteration of
the optimisation algorithm. The algorithm generates a
sequence of maps M [0],M [1],M [2], . . . with monotonically
increasing likelihood until a local maximum is reached.
Since finding this local maximum can still be a difficult
problem in a high-dimensional space, it has become
common practice to represent the map as a discrete
occupancy grid [42, 43] and solve equation (22) for each
grid cell independently.

The EM approach has several key advantages over the
EKF. Firstly, it provides a solution to the data association
problem that does not require the unique identification of
landmarks; in fact observed landmarks can be somewhat
indistinguishable. Data association is performed through
gradual reinforcement or degradation of matching proba-
bilities as all the observation data over time is considered.
This allows past data association decisions to be revised
and possibly corrected. The EM approach can also estimate
the mode of complex posteriors, and does not assume
Gaussian noise like the EKF.

However, there are a few weaknesses that need to be
considered. Unlike the EKF, the EM approach processes
the entire data set multiple times, and as a consequence,
does not provide an incremental solution to SLAM where
a map is incrementally built as new observation data is
received. Another weakness is that the EM algorithm is
traditionally suited to offline processing. Online versions
have been proposed (e.g., [44]), however, they partially
sacrifice the robustness in the data association process to
accommodate the restricted computational time windows.
Lastly, the EM approach can become trapped in a local
maxima and, hence, arrive at a suboptimal solution.

Montemerlo et al. [45] have recently proposed a new
probabilistic approach to SLAM that is based on particle
filtering [46, 47, 48]. This approach, called FastSLAM,

estimates the posterior p(xr0 : k
,M | z0 : k,u0 : k) (also de-

noted bk(xr0 : k
,M)), which is a slight variation of the

commonly sought posterior given in equation (19). That is,
instead of estimating the posterior over momentary robot
poses, it estimates the posterior over robot paths. Before we
describe how this is done, the topic of particle filtering will
be briefly summarised first (see [47] for a comprehensive
review).

The idea behind particle filtering is to approximate the
posterior density in a Markov chain through a process
known as importance sampling [49]. In essence, the poste-
rior is represented by a set of m random sample states
or particles Sk = {s j

k | 1 ≤ j ≤ m} drawn from it.
Each particle is given a weighting ω j

k called an importance
factor, which signifies the particle’s quality relative to
the other particles. The weighted particle set Sk is then
processed in lieu of the full posterior. Note that the full
posterior can still be roughly reconstructed, e.g., using a
histogram or kernel based density estimation technique
[50], because of the duality between particles and the
posterior from which they are drawn.

A vanilla particle filter process can be described ab-
stractly as follows. First, the initial set of particles S0 are
randomly drawn from the state space. For time k ≥ 1, the
set Sk−1 is filtered (i.e. transformed into Sk) by computing
two stages: a prediction stage and an update stage. In
the prediction stage, a particle s̄ j

k is generated for each
particle s j

k−1 ∈ Sk−1 according to an actuation model. The
resulting particles have a distribution commonly referred
to as the proposal distribution. These particles are placed
in a temporary set S̄k. In the update stage, the weight
of all the particles in this temporary set are re-evaluated
based on the latest observation information to produce the
target distribution. Finally, m particles are drawn (with
replacement) from S̄k to give Sk. This involves drawing
the higher weighted particles from S̄k and resampling
the others. The specifics of this process, however, vary
according to the application and the particular particle filter
used.

In the context of mobile robot localisation, the par-
ticle filter approach known as Monte Carlo localisation
(MCL) [51] has been shown in studies such as [52] to
be more robust than the EKF. MCL can also represent
complex posteriors; solve the kidnapped robot problem;
and operate as an anytime algorithm [53] under limited
computational resources. However, for years particle filters
were confined to these low-dimensional problems, due to
the number of particles needed to populate a d-dimensional
space increasing exponentially with d. Particle filters were
therefore too inefficient to be used for high-dimensional
problems like SLAM. However, this changed when Mur-
phy [54] identified a structural property of SLAM that
could be exploited to develop an efficient particle filter.
This structural property is based on the condition that
correlations in the uncertainty of different map landmarks
arise only from uncertainty in the robot’s pose. Therefore,
if hypothetically the robot knows its trajectory perfectly,
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the landmark states can be estimated independently of
each other. This conditional independence has led to the
use of the so-called Rao-Blackwellised particle filter [47]
(named after its relation to the Rao-Blackwell theorem
[55]), which analytically marginalises out some of the
variables attributed to a problem’s structure for an efficient
solution.

The FastSLAM approach is an instantiation of the
Rao-Blackwellised particle filter. It uses the structural
property identified by Murphy to estimate the posterior
bk(xr0 : k

,M) in the factorised form [45, 56]:

bk(xr0 : k
,M) =

bk(xr0 : k
)

n∏
i=1

p(xi |xr0 : k
, z0 : k) (23)

This factorisation is exact and universal to the SLAM
problem. Essentially, it decomposes the posterior over robot
paths and maps into n + 1 recursive estimators: one esti-
mator over robot paths bk(xr0 : k

) and n separate estimators
over landmark states p(xi |xr0 : k

, z0 : k) conditioned on
each hypothetical path.

FastSLAM estimates the robot path posterior bk(xr0 : k
)

using a particle filter. Each of the particles in this filter
maintains its own map that consists of n independent EKFs,
one for each of the landmarks. Thus, the j-th particle at
time k can be written in the form

S j
k = {x j

rk
, µ j

1, k,Σ j
1, k︸ ︷︷ ︸

landmark x1

, . . . , µ j
n, k,Σ j

n, k︸ ︷︷ ︸
landmark xn

} (24)

where the mean µ j
i, k and covariance Σ j

i, k are the Gaussian
parameters of each landmark posterior. Therefore Fast-
SLAM integrates particle filtering with Kalman filtering;
however, in this context, each EKF is only estimating a
single landmark position and, hence, is low-dimensional.

Currently, there are several variants of the FastSLAM
algorithm, including FastSLAM version 1.0 [45], 2.0 [57],
and FastSLAM with unknown data association [56]. As-
suming that the data association is uniquely known and the
initial set S0 has been initialised, the filtering algorithm
proceeds as follows. First, the path posterior is extended
by sampling a new pose xrk

for each particle in the prior
sample set Sk−1. FastSLAM 1.0 samples new poses based
on the most recent control input uk:

x j
rk
∼ p(xrk

|x j
rk−1

,uk) (25)

Although the measurements zk are ignored, they are later
incorporated through the resampling process. Nevertheless,
this way of sampling new poses has been identified as being
inefficient [57], especially when the robot’s motion errors
are large relative to the measurement noise. When this is the
case, sampled poses tend to fall into areas of low measure-
ment likelihood and are consequently poorly weighted. It is
then likely that a large proportion of the sampled poses will
be terminated, or wasted, through the resampling process.

FastSLAM 2.0 addresses this problem by incorporating the
measurements into the proposal distribution

x j
rk
∼ p(xrk

|x j
r0 : k−1

, z0 : k−1,u0 : k−1) (26)

which constitutes the primary difference between the two
versions.

The second step of the filtering process involves updating
the observed landmark estimates. This is performed by
linearising the measurement function h and applying the
standard EKF measurement update equations [13] (refer to
[56] for a detailed description). These first two steps are
then repeated m times to produce a set of m particles.
The final step involves correcting the proposal distribution
through resampling. Each particle is first assigned an
importance weight, given by

ω j
k =

target distribution
proposal distribution

(27)

Then m particles are drawn (with replacement) with a
probability proportional to their weights. In the case of
FastSLAM 1.0, this resampling process accounts for the
latest measurements zk, which were earlier ignored. The
purpose of resampling in FastSLAM 2.0, however, is more
mundane. It is used merely to correct mismatches in the
normalisation between particles [57].

In terms of performance, the FastSLAM approach has
several key strengths. First and foremost, data association
decisions can be robustly made on a per-particle basis, anal-
ogous to multiple hypothesis tracking (MHT) (discussed
in section II-A). Therefore, instead of just maintaining
the data association with the maximum likelihood, the
posterior tracks multiple data associations that are resolved
over time. Another strength is its computational complexity
of O(m log n) when the maps are represented by binary
trees [45], which is theoretically lower than the quadratic
complexity of the vanilla EKF. Also, FastSLAM can cope
with a non-linear vehicle model without the need for
linearisation, and it can solve the kidnapped robot problem.

The primary weakness of FastSLAM is that the re-
sampling process continually reduces the diversity in the
particle set by repeatedly discarding some particles and
duplicating others [58]. If the resampling steps of every
particle is traced back in time, there will be a point at
which all the particles share a common history of the
robot’s trajectory and hence the same ancestor. Therefore
the hypotheses of the robot’s trajectory and landmark
positions prior to this point of commonality cannot be
revised. The resulting lack of particle diversity, called the
impoverishment problem [59], restricts the size of the loop
or exploratory excursion that can be corrected (the concept
of closing the loop will be fully described in section III) and
can lead to a suboptimal solution. A closely related problem
occurs when there is an insufficient number of particles
in the vicinity of the correct state [60]. This deprivation
problem, which is inherent to all proactive approaches, is
especially troublesome in large environments or when the
robot is proverbially kidnapped. A lack of particles or the
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time lag involved in distributing particles can ultimately
cause the filter to diverge. While increasing the number
of particles can offset these problems, it adds to the
computational complexity and therefore there is a limitation
to the amount of particles that can be processed in real-
time. Finally, a large computational effort can be wasted in
updating particles with a negligible weight, as the variance
of the weights tends to increase stochastically over time.

C. Scan Matching

Another category of SLAM approaches includes those
that are based on aligning neighbouring sensor scans, e.g.,
from a laser or sonar scanner, to estimate the relative
translations and rotations of the robot between scans. These
scan matching approaches align the overlapping segments
of the scan set by minimising some distance metric between
inter-scan primitives or raw data. This is somewhat similar
to model-based matching [61], however, scan matching
does not use an accurate, dependable model as the base
for comparison. Instead, it finds the congruence between
noisy data sets that are negatively affected by occlusion
and hence the robot’s limited field of view.

The majority of scan matching approaches are derived
from the Iterative Closest Point (ICP) algorithm [62, 63]
and its many variants [64]. These approaches are based on
iteratively refining an initial robot pose estimate obtained
through odometry, which limits the search space. However,
it is assumed that the displacement between the initial
estimate and the robot’s true pose is small enough to arrive
at the globally optimal match.

The various approaches mainly differ in the primitives
they select and match; the type of distance metric used
(e.g., sum of squared distances between corresponding
pairs); the weighting of correspondences; and the rejection
of outliers. For example, Cox matches scan points to the
line segments of a hand-crafted map [65]. Lu and Milios
matches points to points in an a priori unknown, arbi-
trary environment (not necessarily polygonal) [66]. Their
method does not rely on the uniqueness of landmarks
and derives robustness from using the bulk of the scan
points in the matching process. Gutmann and Konolige
use a combination of the above two methods to take
advantage of the computational efficiency of Cox’s method
and the universal capabilities of Lu and Milios’s method
[67]. They also take into consideration the topological
relationships between neighbouring robot poses, associated
via odometry and scan overlaps, to maintain a consistent
map in large cyclic environments. Jensen and Siegwart
establishes correspondences between points based on a
probabilistic distance metric that incorporates both sensor
noise and robot pose uncertainty [68]. This provides a
way of robustly detecting outliers, and as a result, their
algorithm exhibits a faster convergence than the standard
ICP algorithm.

There are other, less common types of scan matching ap-
proaches. Some approaches are based on finding statistical
correlations between scans, such as Weiss and Puttkamer’s
histogram matching approach [69] and Biber’s normal

distributions transform (NDT) [70]. These approaches do
not require explicit correspondences between individual
scan elements, however, they rely on the chosen statistical
criteria effectively modeling the environment.

There are also approaches that have the ability to glob-
ally localise the robot without the aid of initial pose
information. Crowley et al. accomplish this by using a
training set of range scan profiles from various known
poses to construct a lookup table, which can then be
indexed to identify possible origins of a scan [71]. Gut-
mann et al. exploit the structured nature of the RoboCup
soccer field [72] to match line segments extracted from
a scan to those of an a priori map [73]. Weber et al.
similarly use an a priori map of a structured environment,
but instead of matching line segments, they match edges
and concave/convex corners [74]. The matching process
involves heuristically searching for corresponding patterns
of inter-feature relationships, which are invariant to the
robot’s observational viewpoint. Tomono matches what
are called directed points, comprising points and their
tangent directions, which are also viewpoint invariant [75].
His approach solves the SLAM problem; however, it is
computationally complex and the map does not converge
over time. To address the complexity problem, global
localisation is only applied when the robot fails to find
a match using a localised search in the vicinity of the
odometry estimate. This can lead to a suboptimal solution
because large odometry errors in a partially symmetrical
environment can produce multiple hypotheses which all
need to be considered. Nevertheless, multiple hypotheses
can only be resolved if the environment has unique, de-
tectable features and, hence, is not overly symmetrical.

Finally, there are hybrid approaches that combine some
other SLAM approach with scan matching. For instance,
Hähnel et al. combine FastSLAM with scan matching to
minimise odometry error, thereby reducing the number of
particles needed to build large-scale maps [76]. Pradalier
and Sekhavat [77], on the other hand, use scan matching to
improve the data association robustness of an EKF variant
called the geometric projection filter (GPF) [78].

D. Qualitative Approaches
The last category of SLAM approaches in many ways

mimics the qualitative, relativistic knowledge used in an
animal or human’s mental representation (or cognitive map
[79]) of navigable environments [80, 81, 82, 83]; and hence
has a biological premise. Qualitative SLAM approaches
obviate the need for rigorous models of the robot’s loco-
motion mechanism and sensors. They also do not strive
for a metrically accurate map, which in combination gives
them a heightened robustness and computational efficiency.
These approaches, including [84, 85, 86], observe the
topological spatial relationships between landmarks or ob-
stacles to navigate and map the environment. Since their
main objectives does not include finding absolute position
estimates, they are in a sense the least relevant in this
review to the new SLAM approach proposed in the next
section; and for this reason, they will not be reviewed in any
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depth here. However, qualitative approaches do highlight
the inverse relationship between rigorous modeling and
robustness/generality, which is an important justification for
the proposed approach.

III. THE KIDNAPPED WAY

This section provides a comprehensive blueprint of the
proposed SLAM approach. The underlying principles and
ideas of this approach are described, along with the various
intricacies of solving the SLAM problem without odometry
or the assumption of motion continuity. To begin, there is
a brief discussion in Subsection III-A of the requirements
and makeup of the sensor system and landmark detec-
tion process. This is followed by the multiple-hypothesis
data association algorithm in Subsection III-B. Subsec-
tion III-C describes the representation and handling of
positional errors for constructing the environmental map.
An interesting temporal anomaly is also considered, along
with well-known SLAM issues such as the correlation
problem, map convergence, map consistency and closing
the loop. Subsection III-D explores a few pathological
or failure cases, and lastly Subsection III-E describes the
mechanisms for incorporating dead-reckoning information
and the resulting performance gains. Note that there are
no results from practical experimental trials given here,
however, preliminary results are given in [87, 88] and more
conclusive results gathered from several national parks and
bushlands2 will be published shortly.

Before we begin, the pool of available English/Greek
letters for use as mathematical symbols has been exhausted
in the previous section and therefore several letters will
have to be reassigned. This will be done in an explicit
manner, when needed, to avoid any confusion.

A. Landmark Detection

The landmark detection process involves using a sensor
system to perform scans of the environment, and in each
scan, observe a batch of landmarks and their relative
geometric relationships. Since these relationships tend to
remain invariant to the observer’s point of view [89], they
can be exploited to recognise landmarks whose appearance
would otherwise vary according to the robot’s changing
pose. The sensor system used in this role can comprise
one of many possible active or passive sensing devices
[90, 91, 92] or a fusion of multiple devices in a com-
plementary or redundant fashion [26, 93]. Each option
has comparative advantages and disadvantages. However,
because exteroceptive based sensing is such a critical
element of this SLAM approach, there are several sensor
qualities that are either necessary or, at the very least,
highly desirable.

Firstly, the sensor needs to be able to gather a rich,
dense data set in each scan that adequately represents a
collection of landmarks. The more information that can be
gathered to distinguish the individual landmarks, e.g., size,
shape, colour, inter-landmark distances and angles, the less

2A term used to describe the harsh Australian outback.

combinational matches that exist between the landmarks
in a scan and their possible counterparts in the map and,
hence, the more efficient the data association process.
Secondly, during the scanning interval, the robot is assumed
to be either stationary or have a negligible movement with
respect to the scanning speed. This is a requirement because
without dead-reckoning information, motion compensation
cannot be applied to the data set. Also, in the case of 2D
SLAM, the sensor may need to either remain in an upright
position, e.g., by being suspended on a gimbal, or ascertain
its roll and pitch angles through auxiliary sensors, such as
an inclinometer or gyroscope, to track the horizontal plane
when the robot traverses over an undulating surface.

An important objective to consider is that the angle of
view and range / depth of field of the sensor need to be
maximised in order to ensure a high probability of overlap
between the scan and map, and to maximise the overlap-
ping region itself. There are also domain considerations
that dictate the suitability and capacity of different sensing
modalities. In a natural outdoor environment, for instance,
a laser scanner can be used to accurately determine the
surrounding geometry, whereas a digital colour camera may
not be able to reliably differentiate between the many subtle
shades of colour due to changing lighting conditions.

To provide a representative example, the authors im-
plemented the proposed SLAM approach for outdoor en-
vironments using the 3D laser scanner proposed in [94].
This scanner consists of a laser rangefinder (LaserAce IM
HR from MDL, UK) mounted on a pan-tilt unit (PTU-46-
17.5 from Directed Perception, CA, USA) for 3D angular
positioning. The laser rangefinder has maximum range of
300m; a resolution of 1dm; a typical accuracy of 3dm; and
makes range measurements at a rate of 1000Hz. A 3D scan
is performed by using the pan-tilt unit to horizontally slue
the laser in a back-and-forth manner, while incrementally
adjusting its elevation angle. The scan specifications are
based on the selection of values for the horizontal angular
range, horizontal slue rate, vertical angular range and verti-
cal resolution parameters of the pan-tilt unit. For example,
scans in a recent experimental trial were performed using
a horizontal range of 257◦, horizontal slue rate of 51.4◦/s,
vertical angular range of 25.7◦ and vertical resolution of
1.03◦, which resulted in each scan taking 130, 000 readings
over a time period of approximately 2.2 minutes. Note
that this number of readings per scan can be dramatically
increased to millions (e.g., by decreasing the horizontal
slue rate and increasing the vertical angular resolution);
however, this is at the cost of a higher acquisition time
and memory/computational load.

After each scan, the landmark detection algorithm ex-
tracts a batch of landmarks from the collected data set.
The algorithm proposed here is fully described in [87].
It extracts a set of 2D point landmarks, in the sensor’s
local frame of reference (see Fig. 1), that represents the
centroids of environmental features whose spatial extent is
orthogonal to the sensor’s horizontal plane. This involves
searching for arbitrary features (of no particular shape) that
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are highly visible, laterally compact, and not partially oc-
cluded by other features. The first two criteria are based on
relative measures. That is, highly visible features are those
that occupy a large spatial range along the z-axis relative to
their neighbours. Lateral compactness is a measure of how
small a feature extends in the horizontal direction. Features
that are more laterally compact than others tend to have a
lower variability in their perceived centroid when viewed
from different angles, and therefore provide more accurate
triangulation results. The third criterion, however, removes
unstructured features that are partially hidden behind other
features, as their true appearance cannot be ascertained.

The features that meet these criteria in an outdoor
environment may include, amongst others, trees, bushes,
plants, poles/posts, buildings, rock formations and sharp
surface variations. A convex hull [95, 96] is created around
each of these features to extract their centroid points, which
provides the landmark set Sk = {sj, k | 1 ≤ j ≤ mk} at
time k. The number of landmarks detected mk must be
at least three to obtain a unique triangulation result in 2D
SLAM. However, preferably more than this critical number
is detected for the purpose of redundancy.

There are several issues about this type of landmark set
that need to be considered. Firstly, the landmarks are only
represented by 2D points in local coordinates

sj, k =
[

x′j, k

y′j, k

]
(28)

and therefore there is no other information used, such as
landmark size, shape, texture or model based identification,
to assist the data association process. It should be noted,
however, that this landmark detection algorithm serves as
a generalised basis for the proposed SLAM approach, to
which there are many extensions (as discussed in Sec-
tion IV). Secondly, by using a convex hull to determine
a landmark’s centroid, the resulting centroid point may not
lie within the landmark itself if the landmark is concavely
shaped. While having a centroid point in free space is
theoretically incorrect, it does not affect the workability of
this representation. Thirdly, there is a phenomenon that we
call “the wandering centroid” which occurs as a result of
a solid landmark being partially hidden from the sensor’s
field of view. As the robot moves around the landmark,
as depicted in Fig. 2, the perceived centroid tends to
wander with it. The extent of this deviation becomes
increasingly more pronounced as the robot moves towards
the landmark or as the landmark’s lateral size increases,
thereby exacerbating the occlusion. This error, along with
sensor noise, can be taken into account using a probabilistic
model or some type of gating technique. In this case, a
simple Euclidean error distance ε is used as a tolerance
bound for each centroid.

A landmark that can be hidden to a considerable degree
from the sensor’s field of view may be represented by
multiple centroids over time, as shown in Fig. 3 (note that
the landmark shown here is structured only for illustrative
purposes). In essence, each of these centroids represents

Fig. 2
THE WANDERING CENTROID

Fig. 3
PARTITIONING A LANDMARK ACCORDING TO VIEWING AREAS

an individual landmark whose appearance is restricted to
when the robot is in a particular viewing area or zone.
The number of centroids can be reduced and the zones
expanded, by increasing the error tolerance ε. However, this
increases the possible data association combinations in a
cluttered environment; and unless there is a dominance of
laterally large or elongated features, it is highly unlikely
that any single feature will generate a dense cluster of
insignificant landmark points anyway.

B. Multiple-Hypothesis Data Association

The multiple-hypothesis data association algorithm
matches the batch of landmarks extracted from the scan Sk

to those in the map M , while considering any ambiguities
that arise from environmental symmetries or sensor limi-
tations. Since at time k = 0 the environment is unknown,
the first scan S0 can be used to provide both the global
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frame of reference, as shown in Fig. 1, and the initial set
of landmarks in M . The robot’s pose is also initialised,
somewhat arbitrarily, to xr0 = [0 0 0]T . The proposed
data association algorithm is then executed for time k ≥ 1.
We shall first describe this algorithm based on the scan
S = {s1, . . . , sm} (the time subscripts have been left out
for brevity) and map M = {x1, . . . ,xn} at time k = 1,
and then show how multiple hypothesis tracking (MHT) is
incorporated for future times.

Unlike most other SLAM approaches, data association
in this approach cannot be performed using the standard
gated nearest-neighbour (NN) algorithm [2], because with-
out dead-reckoning or motion continuity information, the
required pose predictions cannot be made. Instead, we
propose a graph matching approach that transforms the
scan S and map M into two graphs G1 = (V1, E1)
and G2 = (V2, E2), respectively, and then finds subgraph
isomorphisms between them to determine their common-
alities. The vertex sets V1 and V2 of the graphs are
used to represent the individual landmarks, which in this
case are only distinguished by 2D points. The edges that
interconnect the vertices, given by the sets E1 ⊆ V 2

1 and
E2 ⊆ V 2

2 , are used to represent geometric relationships
that are invariant to the robot’s viewpoint. In doing so,
common subgraphs of the graphs G1 and G2, and hence
data association hypotheses, can be found independently of
the robot’s pose. The geometric relationships that are used
here are the Euclidean distances between landmark points.
While these relationships may not be as discriminant as
others, e.g., the relative landmark orientations [32], their
detection does not rely on structured features being in the
environment.

A data association hypothesis can now be given by the
correspondence set X ⊆ V1×V2, where the vertices in each
of the matched pairs 〈sa,xb〉 ∈ X share a consistent set of
edges. Since the graphs are matched based on their edges,
there is a complexity problem that arises if the graphs are
complete (i.e., fully connected). While the scan graph G1

remains relatively small, the map graph G2 is dynamically
expanding over time, causing an exponential growth in the
number of edges.

For a complete map graph with n vertices, the number
of edges is given by the binomial coefficient(

n
2

)
=

n(n− 1)
2

. (29)

Therefore, the number of edges in a graph with 10 vertices
is 45; 100 vertices is 4950; or 1000 vertices is 499, 500.
To reduce this growth rate, a nearest-neighbour strategy is
proposed that confines the inter-landmark relationships to
only those between neighbouring landmarks. This strategy
is based on the Delaunay triangulation (DT) [97], which
can optimally generate a triangular mesh from a point set in
O(n log n) time. An example of a DT is shown in Fig. 4(a).

First, a DT is created for both the landmark sets S
and M . The resulting mesh edges, indicating the closest
landmark neighbours, form the initial edge set of the

(a) Delaunay Triangulation (DT)

(b) 1st Neighbour Depth of the Center Vertex

(c) 2nd Neighbour Depth of the Center Vertex

Fig. 4
NEAREST-NEIGHBOUR STRATEGY

corresponding graphs G1 and G2, respectively. The vertices
of these graphs are now linked to their most immediate
neighbours, which we call a depth level of one (see
Fig. 4(b)). To obtain a depth of two, edges are added to
the graphs that link landmarks that are separated by a path
length of two in the DTs (see Fig. 4(c)). Similarly, a depth
of three is obtained using a path length of three; and so
on. The selection of which depth level to use is therefore
a tradeoff between graph completeness and computational
complexity. The depth level can also be changed over time,
e.g., decreased to compensate for an expanding map, or
different values can be used for each of the vertices, as
a measure of their importance or uniqueness, to regulate
their contribution to the matching process.

To demonstrate how the number of edges varies accord-
ing to the chosen depth, a simulation was performed that
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Fig. 5
THE EDGE COUNT AS A FUNCTION OF NEIGHBOUR DEPTH FOR A

1000-VERTEX GRAPH

generated 1000 random points on a 2D plane. The nearest-
neighbour strategy was then applied, with the depths rang-
ing from one to twenty for all vertices. The resulting edge
counts are graphed in Fig. 5. As an example, a depth of
two resulted in 9784 edges, which is roughly 2% of the
number in a complete graph.

Apart from a selectable reduction in the number of
edges, an important property of this strategy is that it
can adapt to changes in the density and separation of
landmarks. Therefore, a landmark’s nearest neighbours is
determined by the spatial attributes of its local cluster.
Note that its nearest neighbours is also influenced by the
DTs optimality criterion, i.e., maximising the minimum
angle of the triangles; however, we conjecture that other
triangulation schemes can be used with similar results.

A depth of two will be used here for both the scan graph
G1 and map graph G2. Hence, the only vertices of these
graphs that will be interconnected by edges, representing
Euclidean distances, are those that satisfy the nearest-
neighbour strategy at a depth of two. An example of the
resultant graphs G1 and G2 is shown in Figs. 6(a) and 6(b),
respectively. (Note that the edge distances are to scale.)
While these graphs happen to be complete in this instance,
due to their small size, their primary function is to provide
a simple example for describing the matching process.

The first step of the proposed matching algorithm in-
volves creating a correspondence graph [98], denoted C,
which represents the compatibility between each of the
pairs 〈sa,xb〉 ∈ V1 × V2. The vertices of graph C are all
the pairs whose two elements share a common property,
i.e., a connecting edge of equal distance (within tolerance
bounds). The edges of C represent the consistency between
each of these vertices. That is, if 〈s1,x2〉 and 〈s3,x4〉 are
two vertices of C, they are interconnected by an edge if
the distances associated with E1(s1, s3) and E2(x2,x4)
are equivalent. The method for creating graph C involves
first finding all the edge matches between graphs G1 and
G2, and then adding the possible vertex combinations of

(a) Scan Graph (G1) (b) Map Graph (G2)

(c) Correspondence Graph (C)

Fig. 6
COMMON SUBGRAPHS OF THE GRAPHS G1 AND G2

each edge match to C as vertices and interconnecting
those that are compatible with edges. As an example, the
edge E1(s2, s3) of G1 in Fig. 6(a) is a match for the
edge E2(x3,x4) of G2 in Fig. 6(b). The possible vertex
combinations, and hence the resulting vertices in C, in-
clude 〈s2,x3〉, 〈s2,x4〉, 〈s3,x3〉 and 〈s3,x4〉. The compat-
ible edges are {〈s2,x3〉 , 〈s3,x4〉} and, through symmetry,
{〈s2,x4〉 , 〈s3,x3〉}. The final state of the correspondence
graph after all the matched edges between G1 and G2 have
been incorporated is shown in Fig. 6(c).

It is common practice to then find the maximum clique
(maximum complete subgraph) in graph C to obtain the
maximum common subgraph (MCS) of the graphs G1

and G2 [32]. However, there are several problems with
this approach. Firstly, finding the maximum clique of an
arbitrary graph is NP-complete, and hence is computation-
ally complex [99]. Furthermore, the graphs G1 and G2

would have to be complete, which as discussed previously,
exacerbates the complexity problem as the map M expands
over time. Another problem to consider is that the MCS,
while the best match, may not be the right match. The MCS
is merely the best hypothesis at one particular time instant;
however, another common subgraph may prove to be a
better hypothesis over time. Consequently, a new algorithm
is proposed here that finds common subgraphs based on
the notion that only three consistent vertices in graph C
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are required to triangulate the robot’s pose.
First, the vertices of graph C are ordered according

to their degree (valence) sequence, i.e., in monotonically
nonincreasing degrees from the maximum degree ∆C to
the minimum δC (see Fig. 6(c)). The reason for doing
this is that it heuristically places the vertices that are
most likely to belong to a large common subgraph early
in the order. Next, the vertices are processed in turn, by
following each of their edges in search for a triangular
subgraph. To show some examples, several triangular sub-
graphs are highlighted in Fig. 6(c), such as the subgraph
{〈s2,x3〉 , 〈s3,x4〉 , 〈s4,x5〉}.

When a triangular subgraph is found, the circle inter-
section approach [87] is used triangulate the robot’s pose
xrk

based on the three constituent vertices. A unique pose
is found if the three vertices do not lie on a circle or in a
straight line (a conjugate pair is obtained in the case of a
straight line). The robot’s pose is then used to transform
the local coordinates of the scan S into global coordinates:

xj = xrk
+ x′j cos(θrk

)− y′j sin(θrk
) (30)

yj = yrk
+ x′j sin(θrk

) + y′j cos(θrk
) (31)

With both the scan S and map M now being in the same
coordinate system, the points in S are directly compared
to those in M to obtain the complete set of vertex matches
and an associated match count (i.e., the number of vertex
matches). This constitutes one hypothesis. The process now
reiterates for the next triangular subgraph that is found;
however, if it is a subset of the earlier hypothesis, then it
can be eliminated, especially if it is associated with higher
positional errors (described in the next subsection).

There are two ways in which this algorithm can termi-
nate. The first way is if every triangular subgraph has been
found and processed in a brute force manner. The second
is as an anytime algorithm [53], which takes advantage
of the vertex order to arrive at the best hypotheses within
the available time window. After completion, the resultant
hypothesis set is given by Hk = {h(λ)

k | 1 ≤ λ ≤ Λ},
where Λ is the number of hypotheses in the set. Note that
the superscript ‘ (λ) ’ will also be used for other variables
to indicate the particular hypothesis to which they belong.

The hypotheses Hk are handled by the MHT algorithm,
which resolves their associated data association ambiguities
by tracking and assessing them over time. The MHT algo-
rithm proposed here does not compare hypotheses based on
a probabilistic model like in [34]; instead, hypotheses are
weighted according to how many data association matches
are made over time. Therefore, stronger hypotheses are
those whose evolution of the map better corresponds with
the accumulated observation data.

Each hypothesis h
(λ)
k maintains its own version of the

map M (λ), robot path x(λ)
r0 : k , and vertex match count w

(λ)
k .

The hypotheses are compared based on their accumulated

match count W
(λ)
k over k time periods, given by

W
(λ)
k =

k∑
t=0

w
(λ)
t (32)

Initially, one hypothesis h
(1)
0 is created at time k = 0 to

hold the map M (1) (from scan S0), robot pose x(1)
r0 , and

match count w
(1)
0 (initialised to zero). For time k ≥ 1, the

data association algorithm is executed for each hypothesis
in Hk−1, which produces a new set of hypotheses Hk.
These hypotheses are then compared based on their ac-
cumulated match count W

(λ)
k . The best hypothesis, and

hence the SLAM solution, is the one with the highest
weighting; however, the best Λmax are kept. The map
building algorithm is then called for each hypothesis in
turn (described in the next subsection). This process then
reiterates for the next time instant.

The maximum set size Λmax is used to limit the
number of hypotheses being spawned during each cycle,
and therefore maintains tractability. Weak hypotheses are
consequently discarded in a “survival of the fittest” manner,
leaving strong hypotheses to reign. The potential problem
with this, however, is that there may be a point in the past
where all hypotheses share the same robot path, which as a
result, cannot be revised by this algorithm. This is in fact a
similar problem to that found when limiting the number of
particles in FastSLAM [58]. The result is that the selection
of Λmax is a tradeoff between the hypothesis diversity and
computational complexity.

To illustrate how this MHT algorithm operates, an ex-
ample scenario is given in Fig. 7. The initial map M (1)

at time k = 0 (from scan S0) is shown in Fig. 7(a). This
map has two symmetrical landmark clusters: {x2,x3,x4}
and {x7,x5,x6}. A scan at time k = 1 is then performed,
which provides the landmark set S1 shown in Fig. 7(b).
The three landmarks s1, s2 and s3 have the same spatial
properties as either of the symmetrical clusters in map
M (1). The landmark s4, however, does not correlate with
any landmark in M (1), possibly because it was previously
obstructed or out of range; sensor errors; or environmental
dynamism. In any case, the result is two hypotheses h

(1)
1

and h
(2)
1 , shown in Figs. 7(c) and 7(d), respectively, which

account for two possible positions of the robot and the new
landmark x8. Since both hypotheses have three landmark
matches, they have an equal weighting of three. At time
k = 2, a new landmark set S2, shown in Fig. 7(e), is
obtained from a scan. This results in several hypotheses
being generated, including h

(1)
2 , h

(2)
2 and h

(3)
2 shown in

Figs. 7(f), 7(g) and 7(h), respectively. The best hypothesis
at this time is h

(1)
2 , as s1 reinforces the new landmark x8

in h
(1)
1 and s4 matches the unique landmark x1.

This reveals the underlying premise upon which this
algorithm is based. That is, data association ambiguities
can be resolved if new landmarks can be added to the
hypothesised maps now and then observed in combination
with other distinguishing landmarks at a later time. There
are, however, several caveats. Firstly, if all the unmatched
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(a) Map M(1) at time k = 0 (from scan S0) (b) Scan S1 at time k = 1

(c) Hypothesis h
(1)
1 (d) Hypothesis h

(2)
1

(e) Scan S2 at time k = 2 (f) Hypothesis h
(1)
2

(g) Hypothesis h
(2)
2 (h) Hypothesis h

(3)
2

Fig. 7
A MULTIPLE HYPOTHESIS TRACKING (MHT) SCENARIO
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landmarks are added to the maps, then weaker hypotheses,
by definition, will have larger maps and hence more clutter.
This means they will be prone to more false data associ-
ations, which can potentially boost their weights. Another
caveat to consider is that adding new landmarks across
the maps of different hypotheses can create symmetries or
mirrors in the landmark patterns, thereby decreasing their
differentiability.

However, these issues can be addressed by adding and
removing landmarks in a strategic manner. In the case of
adding new landmarks, a regulative upper limit on the
number added to each map can be used to minimise the
variance of the map sizes. The new landmarks can then
be carefully selected based on their comparative unique-
ness or resolvability. In the case of removing landmarks,
the match count of each landmark can be compared to
that of its neighbours as an indication of its relative
importance. Landmarks of low importance, possibly due
to bad placement, limited visibility, movement or being
erroneous, can consequently be discarded to reduce map
clutter. Also, landmarks can be removed based on what is
called negative information, which can be gathered from
inconsistencies between the landmarks detected in a scan
and the expectation of what should have been detected,
given the resultant hypotheses.

C. Positional Error Representation and Handling

This subsection presents a novel approach to the repre-
sentation and handling of positional errors that is consid-
erably different to any of those reviewed in Section II. For
instance, there is no use of Gaussian probabilities like in
the EKF [12], nor does the multiplicity of samples in one
of the Monte Carlo approaches [47] have any discernible
similarities. The approach proposed here is based on the
sole premise that the positional uncertainty is directly
proportional to the radial distance from the origin. That is,
the further away a landmark is from the origin, the larger
its positional error tends to be.

The idea behind this approach stems from a simplifica-
tion of the correlation problem [12, 14], which is generally
the problem of maintaining the robot-landmark correlations
that are formed when the robot’s imprecisely known pose
is used to update the landmark positions and vice versa.
However, since this SLAM approach is based on perpetu-
ally solving the kidnapped robot problem, the uncertainty
in the robot’s pose at time k is entirely attributable to the
landmarks used in the triangulation. Therefore, the only
correlations that need to be maintained are between the
landmarks themselves.

Each landmark is correlated to the specific landmarks
used to triangulate its global position. Consequently, a
landmark’s positional accuracy is dictated by the accuracy
of its correlated landmarks, along with the sensor system
and landmark detection process (note that odometry does
not play a role here). Now, if we forgo any rigorous
error models of the sensor system, and the associated
contrivances, then the initial landmarks in the map M (1)

(from scan S0) at time k = 0 can be considered to be

the most accurate of all landmarks, as they define the
global origin and are not based on any triangulations.
Landmarks that are added to the map from scan S1 at
time k = 1 are triangulated using three of the initial
landmarks, and therefore are based on one triangulation.
As a result, their positional uncertainty is higher than the
initial landmarks because the scanning process introduces
new errors, e.g., sensor noise. Similarly, if the landmarks
from scan S2 at time k = 2 are triangulated using three
of the landmarks added to the map at time k = 1, then
they will be based on two triangulations, as their positions
are derived from a triangulation of a triangulation. Again,
these landmarks have a higher positional uncertainty than
their correlated landmarks because the scanning process
introduces additional errors. From this, we can conclude
that the number of triangulations from which a landmark’s
position is based is associated with an accumulative error.
Therefore, given that the sensor system has a limited range,
landmarks further away from the origin will tend to be
based on more triangulations and, consequently, have larger
positional errors; hence our initial premise.

The way in which positional errors are handled here is
analogous to solving the well-known traveling salesman
problem (TSP) [100, 101], which is the problem of finding
the shortest closed path between n cities, given their
intermediate distances. In this case, however, the problem
is defined as finding the shortest path between each of
the n landmarks and the origin, where the path length
is given by the number of triangulations from which a
landmark’s position is derived. Therefore the objective is to
minimise the number of triangulations used to reach every
landmark, and in doing so, minimise the sequential transfer
and distortion of the primary information (i.e., the initial
landmarks).

The error in each of the landmark positions x(λ)
i is

represented by a single nonnegative integer ξ
(λ)
i ∈ Z∗.

Likewise, the error in the robot pose x(λ)
rk at time k is

represented by the integer ξ
(λ)
rk ∈ Z∗. These integers store

the path sizes (number of triangulations), and so they
each provide a qualitative indication of the magnitude of
a positional error. Note that if two landmarks have equal
error values, this does not necessarily mean they have the
same quantitative errors. It means they both share the same
number of time instants where quantitative errors were
accumulated.

At time k = 0, the initial landmarks in the map are each
assigned an error value of zero, as they are based on zero
triangulations. For time k ≥ 1, the map of each hypothesis
is updated using Algorithm 1. (Note that the hypothesis and
time notation has been left out for brevity.) The variable
ξS represents the error of each of the landmarks in scan S,
along with the robot (i.e., ξ

(λ)
rk ← ξ

(λ)
Sk

). Each of the map
landmarks xi has an associated index set Ti, which contains
the indices of the landmarks used to triangulate it. For
example, if landmark x13 has the index set T13 = {3, 5, 8},
then it was triangulated using landmarks x3, x5 and x8. Of
course, the index set associated with the initial landmarks
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at time k = 0 is the null set ∅. The map landmarks
used to triangulate the scan S is given by the index set
TS . Lastly, the correspondence set X represents all the
landmark matches between the scan S and map M , as
hypothesised by the data association algorithm.

Algorithm 1 Update Map
Require: k ≥ 1

1: ξS ← max{ξi}i∈TS
+ 1

2: for all 〈sa,xb〉 ∈ X do
3: if ξb ≥ ξS then
4: xb ← sa {in global coordinates}
5: ξb ← ξS

6: Tb ← TS

7: end if
8: end for
9: add new landmarks with error ξS and triangulation TS

The algorithm at time k ≥ 1 basically operates as fol-
lows. First, the error ξS of the scan S is calculated using the
map landmarks indexed in TS . ξS is assigned the maximum
error of these landmarks (a pessimistic approach) plus one,
which accounts for one extra triangulation. Each of the
landmarks in S that was matched in the data association
process then replaces its corresponding map landmark, if
it has the same or lower error value. The landmarks that
were unmatched are added to the map, with reservations
(as discussed in the previous subsection).

If the environment is static, as is commonly assumed,
then this algorithm can be augmented in several ways.
Firstly, any changes to a landmark xi can be recursively
propagated down to all the landmarks whose position is
correlated with it. To incorporate this, a function call
“Propagate Change( xb )” is inserted between lines 6 and 7
of Algorithm 1. The pseudo-code of this function is given
in Algorithm 2. The benefit of this extension is an increase
in the convergence rate; however, without any form of
averaging, a moving landmark can potentially corrupt a
large proportion of well-placed landmarks.

Another possible extension in a static environment is
based on a time anomaly that occurs in the map building
process. Without any dead-reckoning or motion continuity
information, time does not play a role in ordering the
scans or the way in which the map is build, as there is
no causality. Therefore, the scans can be matched to the
map in any order to maximise their data associations and,
hence, their overlapping regions. Additionally, scans can be

Algorithm 2 Propagate Change( xα )
1: for i = 1 to n do
2: if α ∈ Ti then
3: retriangulate xi

4: ξi ← max{ξβ}β∈Ti
+ 1

5: Propagate Change( xi ) {recursive call}
6: end if
7: end for

continually rearranged to minimise the overall error of the
resultant map. The number of scans that can be optimised
in this manner, however, is limited by real-time constraints.

There are several issues about the proposed approach to
SLAM that need to be considered. Firstly, the way in which
the map converges is based on recursively triangulating
each landmark’s position using three of the most accurate
landmarks that can be observed in the same scan. As a
result, the map will converge to a limit that is determined by
the landmark density and the sensor’s range and accuracy.
Particularly, the longer the range of the sensor, the more
the map converges, and the lower the growth rate of
positional errors outward from the origin. Note that the
robot’s navigational ability is not necessarily hampered
when its far away from the origin, as its locally surrounding
landmarks can have relative errors that are considerably
lower than their global ones.

The well-known loop closing problem also needs to be
considered, especially for cyclic environments [67, 102,
103, 104]. This problem occurs when the robot explores
the environment, adding new landmarks with accumulating
positional errors, and then returns to a place that it has been
to before. The first issue that then needs to be resolved
is the reliable detection of a previously visited place and,
second, is the correction of accumulative error around
the exploratory loop to maintain a consistent map. This
correction is referred to as closing the loop. Generally, the
first issue is difficult to resolve, as the robot’s positional
error can accumulate without bounds; however, if a previ-
ously visited place could be reliably detected, most SLAM
methods are incapable of correcting errors backwards in
time around the loop. To simplify matters, usually methods
that are capable of closing the loop are limited to handling
only small, well-shaped loops. A potential problem that
exists, however, is that if the detection of a previously
visited place is incorrect, then the process of closing the
loop corrupts the map.

The first point to note about the proposed SLAM method
is that the detection of a previously visited place is merely
part of normal operation. There is also no odometric
drift, and so compared to most of the other methods, the
positional errors accumulate around the loop at a relatively
small rate. The loop can be closed by, for example, re-
versing the triangulation order or processing the scans in a
batch manner (as previously discussed); however, we argue
against it. Closing the loop in such an explicit manner re-
quires a decisive decision about the point of closure, which
is always based on uncertain sensor information. While
multiple map hypotheses can be maintained to address
this issue, we suggest the use of another approach that is
based on the map self-correcting over time. This approach
involves removing landmark clusters from the map that are
symmetric to other nearby clusters of significantly lower
error. The result is a self-correcting phase where the loop
is gradually replaced with a more accurate counterpart. By
taking this passive approach, the loop can have an arbitrary
shape (not size). However, during the time it takes for the

16

MECSE-27-2005: "A New Solution to the Simultaneous Localisation and ...", D. J. Spero and R. A. Jarvis



map to correct, as determined by the robot’s navigational
path, the robot may face an increase in the granularity of
positional measurements.

D. Pathological Cases

There are several cases in which the proposed SLAM
solution can fail. Firstly, since the solution is based en-
tirely on exteroceptive sensing, it cannot function in an
environment that has no detectable features. In essence,
the system would become lost. Another failure case is
a completely symmetrical environment (no distinguishing
features). As an example, if the robot were to navigate
down a straight road with only equidistant trees on either
side, as depicted in Fig. 8, then the multiple hypotheses that
are created cannot be resolved. Consequently, the SLAM
process cannot determine if the robot is moving forward or
differentiate between the robot standing still or driving at
full speed. The unresolvable hypotheses can make it seem
that the robot is teleporting between multiple poses, and
for this reason, we call it the teleportation problem. Dead-
reckoning information can be used to somewhat address
this problem (discussed in the next subsection).

Failure can also occur in the case of a very large
or overly cluttered environment. In these situations, the
uniqueness of landmark relativities, such as inter-landmark
distances, may diminish to a point where the number of
possible data associations is too large to process in real-
time. Also, if the map is too cluttered, then the tolerance
bounds of the landmarks may permit an inordinate number
of false data associations that appear to be symmetries. This
can be counteracted by using a more exclusive landmark
recognition technique; however, to sustain a large map,
dead-reckoning information may need to be brought back
into the equation.

E. Pulling in the Reins

So far, dead-reckoning information, motion continuity
information and the robot’s locomotive constraints have
been purposely disregarded. Now, we shall briefly discuss
how this information can be used to improve the perfor-
mance of the proposed SLAM solution, without sacrificing
its generality.

There are several ways in which dead-reckoning infor-
mation from odometry and inertial sensors (gyroscopes,
accelerometers, and combinations thereof, like an inertial
measurement unit (IMU)) can be used to increase the
efficiency and reliability of this solution, along with its
ability to map large environments. For example, this infor-
mation can be used to assist the data association process
by adding weight to certain hypotheses or concentrating the
data association search to only a localised portion of the
map. In either case, the effects of odometric drift, especially
when an inertial system is not used, is still avoided. Also,
the robot’s continuity of motion and locomotive constraints
(e.g., its top speed) can be used to initiate the searches
in the most likely area of the map and exclude pose
hypotheses that are out of range.

Fig. 8
THE TELEPORTATION PROBLEM

IV. CONCLUSIONS AND FUTURE WORK

This paper presented the first solution to SLAM that
mimics the portability of a GPS receiver by purposely
disregarding odometry and the assumption of continuity in
the robot’s motion. The solution functions by perpetually
solving the kidnapped robot problem over time through
sensing the local environment. This essentially decouples
the SLAM process from the robot, and in doing so, there
is no model of the robot or its physical interaction with the
environment. Therefore, it can be implemented as a black-
box system and transferred between robots, regardless of
their physical makeup.

There are several other key benefits of this approach.
Firstly, in comparison to the EKF, it is easy to implement;
both in terms of the required academic competence of the
roboticist and preparatory work (e.g., modeling time and
effort). There are no stringent assumptions of the sensor
errors, despite the sensors playing such a pivotal role.
Also, the system is composed of simple generic elements,
which tends to lead to a more enduring design than its
rigid counterpart [105]. However, some may argue that this
solution does not have an in-depth theoretical backing like
the EKF. In rebuttal to this argument, the EKF’s success
on paper is primarily due to the rigidity of its assumptions,
which hinder its real-world operation. Additionally, as a
point of conjecture, the popularity of the EKF can be
largely attributed to the undeniable ferocity at which it has
been promoted.

While the proposed solution is unconventional, its
universalness warrants further investigation. Some of the
many possible avenues for future work are listed below:

• Landmark Recognition: Enhancing the landmark
recognition system is the most effective way of
reducing data association ambiguities and increasing
the maximum manageable map size. More landmark
attributes can be detected, e.g., by fusing range and
colour sensor data [94], or more redundancy can
be used to reduce the likelihood of failure. Another
possible extension is the use of landmark probabilities
to represent the belief in their identification.

• Complexity Analysis: The data association method
is implemented as an anytime algorithm and, hence,
has a controllable run-time. However, a complexity

17

MECSE-27-2005: "A New Solution to the Simultaneous Localisation and ...", D. J. Spero and R. A. Jarvis



analysis would allow a better comparison with
other methods, and can be used to make proactive
judgments about the system load.

• Recovery Procedures: Possible recovery procedures
need to be explored so that the robot can still navigate
when a SLAM failure occurs. A graceful degradation
scheme can be developed where the system operates
at a reduced capacity while the global frame of
reference is reestablished. Also, the system needs to
be able to diagnose its own failure to obtain its extent.

• Dead-Reckoning Information: A comparative study
to gauge the usefulness of odometry, especially in
large environments, has not yet been performed.

• System Integration: There may be issues involved in
integrating other navigational elements. For instance,
the SLAM system builds a specialised map that may
not show all the obstacles (e.g., a fallen log), which
may be required by the path planner.

• 3D SLAM: Solving the kidnapped robot problem to
additionally measure, with some degree of reliability,
the robot’s depth (or elevation), roll and pitch is a
difficult proposition.

• Commercialisation: Ultimately, a standalone SLAM
sensor can be made available off the shelf. Sensor
specifications such as maximum robot speed, map
size, and operating medium (outdoor, indoor, under-
water etc.) can be used. The concept of miniaturisation
also plays a role here.

REFERENCES

[1] J. J. Leonard, P. M. Newman, R. J. Rikoski, J. Neira,
and J. D. Tardós, “Towards robust data association
and feature modeling for concurrent mapping and
localization,” in 10th Int. Symposium on Robot-
ics Research, Lorne, Victoria, Australia, 9-12 Nov.
2001, pp. 7–20.

[2] Y. Bar-Shalom and T. E. Fortmann, Tracking and
Data Association. Boston, MA: Academic Press,
1988.

[3] I. J. Cox, “A review of statistical data association
techniques for motion correspondence,” Int. J. Com-
puter Vision, vol. 10, no. 1, pp. 53–66, 1993.

[4] R. A. Brooks, “Elephants don’t play chess,” Robotics
and Autonomous Systems, vol. 6, no. 1-2, pp. 3–15,
1990.

[5] D. J. Spero, “A review of outdoor robotics
research,” Dept. Electrical and Computer Systems
Engineering, Monash University, Melbourne,
Australia, Tech. Rep. MECSE-17-2004, 24
Nov. 2004. [Online]. Available: http://www.ds.
eng.monash.edu.au/techrep/reports/

[6] M. W. M. G. Dissanayake, P. Newman, S. Clark,

H. F. Durrant-Whyte, and M. Csorba, “A solution
to the simultaneous localization and map building
(SLAM) problem,” IEEE Trans. Robotics and Au-
tomation, vol. 17, no. 3, pp. 229–241, 2001.

[7] S. P. Engelson and D. V. McDermott, “Error correc-
tion in mobile robot map learning,” in Proc. IEEE
Int. Conf. Robotics and Automation, Nice, France,
12-14 May 1992, pp. 2555–2560.

[8] M. Yim, Y. Zhang, and D. Duff, “Modular robots,”
IEEE Spectrum, vol. 39, no. 2, pp. 30–34, 2002.

[9] D. Rus, Z. Butler, K. Kotay, and M. Vona, “Self-
reconfiguring robots,” Communications of the ACM,
vol. 45, no. 3, pp. 39–45, 2002.

[10] R. R. Murphy, “Marsupial and shape-shifting robots
for urban search and rescue,” IEEE Intelligent Sys-
tems, vol. 15, no. 2, pp. 14–19, 2000.

[11] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe,
“Mobile robot positioning: Sensors and techniques,”
J. Robotic Systems, vol. 14, no. 4, pp. 231–249,
1997.

[12] R. Smith, M. Self, and P. Cheeseman, “A stochastic
map for uncertain spatial relationships,” in 4th Int.
Symposium on Robotics Research. MIT Press, 1987.

[13] P. S. Maybeck, Stochastic Models, Estimation, and
Control. New York: Academic Press, 1979.

[14] P. Moutarlier and R. Chatila, “Stochastic multi-
sensory data fusion for mobile robot location and
environment modelling,” in 5th Int. Symposium on
Robotics Research, Tokyo, Japan, 28-31 Aug. 1989,
pp. 85–94.

[15] J. J. Leonard and H. F. Durrant-Whyte, “Simultane-
ous map building and localization for an autonomous
mobile robot,” in IEEE/RSJ Int. Workshop on Intel-
ligent Robots and Systems, vol. 3, Osaka, Japan, 3-5
Nov. 1991, pp. 1442–1447.

[16] S. B. Williams, P. Newman, G. Dissanayake, and
H. Durrant-Whyte, “Autonomous underwater simul-
taneous localisation and map building,” in Proc.
IEEE Int. Conf. Robotics and Automation, San Fran-
cisco, CA, 24-28 Apr. 2000, pp. 1793–1798.

[17] J. Guivant, E. Nebot, and S. Baiker, “Localiza-
tion and map building using laser range sensors in
outdoor applications,” J. Robotic Systems, vol. 17,
no. 10, pp. 565–583, 2000.

[18] J. A. Castellanos, J. Neira, and J. D. Tardós, “Multi-
sensor fusion for simultaneous localization and map
building,” IEEE Trans. Robotics and Automation,
vol. 17, no. 6, pp. 908–914, 2001.

[19] A. J. Davison and D. W. Murray, “Simultaneous
localization and map-building using active vision,”
IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 7, pp. 865–880, 2002.

[20] S. J. Julier and J. K. Uhlmann, “A counter example
to the theory of simultaneous localization and map
building,” in Proc. IEEE Int. Conf. Robotics and
Automation, Seoul, Korea, 21-26 May 2001, pp.
4238–4243.

18

MECSE-27-2005: "A New Solution to the Simultaneous Localisation and ...", D. J. Spero and R. A. Jarvis

http://www.ds.eng.monash.edu.au/techrep/reports/
http://www.ds.eng.monash.edu.au/techrep/reports/


[21] M. W. M. G. Dissanayake, H. F. Durrant-Whyte,
and T. Bailey, “A computationally efficient solution
to the simultaneous localisation and map building
(SLAM) problem,” in Proc. IEEE Int. Conf. Robotics
and Automation, vol. 2, San Francisco, CA, 24-28
Apr. 2000, pp. 1009–1014.

[22] J. E. Guivant and E. M. Nebot, “Optimization of
the simultaneous localization and map-building al-
gorithm for real-time implementation,” IEEE Trans.
Robotics and Automation, vol. 17, no. 3, pp. 242–
257, 2001.

[23] K. S. Chong and L. Kleeman, “Feature-based map-
ping in real, large scale environments using an
ultrasonic array,” Int. J. Robotics Research, vol. 18,
no. 1, pp. 3–19, 1999.

[24] M. Csorba and H. F. Durrant-Whyte, “A new ap-
proach to map building using relative position es-
timates,” in Proc. SPIE: Navigation and Control
Technologies for Unmanned Systems II, Orlando, FL,
23 Apr. 1997, pp. 115–125.

[25] J. K. Uhlmann, S. J. Julier, and M. Csorba, “Non-
divergent simultaneous map-building and localiza-
tion using covariance intersection,” in Proc. SPIE:
Navigation and Control Technologies for Unmanned
Systems II, Orlando, FL, 23 Apr. 1997, pp. 2–11.

[26] R. C. Luo and M. G. Kay, “Multisensor integration
and fusion in intelligent systems,” IEEE Trans. Sys-
tems, Man and Cybernetics, vol. 19, no. 5, pp. 901–
931, 1989.

[27] M. W. M. G. Dissanayake, P. Newman, H. F.
Durrant-Whyte, S. Clark, and M. Csorba, “An ex-
perimental and theoretical investigation into simulta-
neous localisation and map building,” in Proc. Sixth
Int. Symposium on Experimental Robotics, Sydney,
Australia, 26-28 Mar. 1999, pp. 265–274.

[28] A. Gelb, Applied Optimal Estimation. Cambridge,
MA: MIT Press, 1974.

[29] J. A. Castellanos, J. Neira, and J. D. Tardós, “Limits
to the consistency of EKF-based SLAM,” in 5th

IFAC Symposium on Intelligent Autonomous Vehi-
cles, Lisbon, Portugal, 5-7 Jul. 2004.

[30] S. J. Julier and J. K. Uhlmann, “New extension of
the Kalman filter to nonlinear systems,” in Proc.
SPIE: Signal Processing, Sensor Fusion, and Target
Recognition VI, Orlando, FL, 21-24 Apr. 1997, pp.
182–193.

[31] J. Neira and J. D. Tardós, “Data association in sto-
chastic mapping using the joint compatibility test,”
IEEE Trans. Robotics and Automation, vol. 17, no. 6,
pp. 890–897, 2001.

[32] T. Bailey, E. M. Nebot, J. K. Rosenblatt, and H. F.
Durrant-Whyte, “Data association for mobile robot
navigation: A graph theoretic approach,” in Proc.
IEEE Int. Conf. Robotics and Automation, vol. 3, San
Francisco, CA, 24-28 Apr. 2000, pp. 2512–2517.

[33] D. B. Reid, “An algorithm for tracking multiple
targets,” IEEE Trans. Automatic Control, vol. AC-

24, no. 6, pp. 843–854, 1979.
[34] I. J. Cox and J. J. Leonard, “Probabilistic data

association for dynamic world modeling: A multiple
hypothesis approach,” in Fifth Int. Conf. Advanced
Robotics, Pisa, Italy, 19-22 Jun. 1991, pp. 1287–
1294.

[35] S. Thrun, “Probabilistic algorithms in robotics,” AI
Magazine, vol. 21, no. 4, pp. 93–109, 2000.

[36] A. Papoulis, Probability, Random Variables, and
Stochastic Processes, 3rd ed. Singapore: McGraw-
Hill, 1991.

[37] S. Thrun, “Robotic mapping: A survey,” Dept. Com-
puter Science, Carnegie Mellon University, Pitts-
burgh, PA, Tech. Rep. CMU-CS-02-111, Feb. 2002.

[38] S. Thrun, W. Burgard, and D. Fox, “A probabilistic
approach to concurrent mapping and localization for
mobile robots,” Machine Learning, vol. 31, no. 1-3,
pp. 29–53, 1998.

[39] A. P. Dempster, N. M. Laird, and D. B. Rubin,
“Maximum likelihood from incomplete data via the
EM algorithm,” J. Royal Statistical Society, Series
B, vol. 39, no. 1, pp. 1–38, 1977.

[40] G. J. McLachlan and T. Krishnan, The EM Algorithm
and Extensions. New York: Wiley, 1997.

[41] W. Burgard, D. Fox, D. Hennig, and T. Schmidt,
“Estimating the absolute position of a mobile robot
using position probability grids,” in Proc. Natl. Conf.
Artificial Intelligence, Portland, OR, 4-8 Aug. 1996,
pp. 896–901.

[42] A. Elfes, “Occupancy grids: A probabilistic frame-
work for robot perception and navigation,” Ph.D.
dissertation, Dept. Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA,
1989.

[43] H. P. Moravec and A. Elfes, “High resolution maps
from wide angle sonar,” in Proceedings of the IEEE
Conference on Robotics and Automation, St. Louis,
1985, pp. 116–121.

[44] C. Martin and S. Thrun, “Real-time acquisition of
compact volumetric 3D maps with mobile robots,”
in Proc. IEEE Int. Conf. Robotics and Automation,
Washington, DC, 11-15 May 2002, pp. 311–316.

[45] M. Montemerlo, S. Thrun, D. Koller, and B. Weg-
breit, “FastSLAM: A factored solution to the simul-
taneous localization and mapping problem,” in Proc.
Natl. Conf. Artificial Intelligence, Alta., Canada, 28
Jul.-1 Aug. 2002, pp. 593–598.

[46] N. J. Gordon, D. J. Salmond, and A. F. M.
Smith, “Novel approach to nonlinear/non-Gaussian
Bayesian state estimation,” IEE Proc. F (Radar and
Signal Processing), vol. 140, no. 2, pp. 107–113,
1993.

[47] A. Doucet, N. de Freitas, and N. Gordon, Eds.,
Sequential Monte Carlo Methods in Practice. New
York: Springer-Verlag, 2001.

[48] S. Thrun, “Particle filters in robotics,” in Proc. 18th

Conf. Uncertainty in Artificial Intelligence, Alberta,

19

MECSE-27-2005: "A New Solution to the Simultaneous Localisation and ...", D. J. Spero and R. A. Jarvis



Canada, 1-4 Aug. 2002, pp. 511–518.
[49] D. B. Rubin, “Using the SIR algorithm to simu-

late posterior distributions,” in Bayesian Statistics
3, J. M. Bernardo, M. H. DeGroot, D. V. Lindley,
and A. F. M. Smith, Eds. Oxford, UK: Oxford
University Press, 1988.

[50] B. W. Silverman, Density Estimation for Statistics
and Data Analysis. London: Chapman and Hall,
1986.

[51] F. Dellaert, D. Fox, W. Burgard, and S. Thrun,
“Monte Carlo localization for mobile robots,” in
Proc. IEEE Int. Conf. Robotics and Automation,
Detroit, MI, 10-15 May 1999, pp. 1322–1328.

[52] J. S. Gutmann and D. Fox, “An experimental com-
parison of localization methods continued,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
Lausanne, Switzerland, 30 Sep.-5 Oct. 2002, pp.
454–459.

[53] S. Zilberstein, “Resource-bounded sensing and plan-
ning in autonomous systems,” Autonomous Robots,
vol. 3, no. 1, pp. 31–48, 1996.

[54] K. P. Murphy, “Bayesian map learning in dynamic
environments,” in Neural Information Processing
Systems, Denver, CO, 29 Nov.-4 Dec. 1999, pp.
1015–1021.

[55] G. Casella and C. P. Robert, “Rao-Blackwellisation
of sampling schemes,” Biometrika, vol. 83, no. 1,
pp. 81–94, 1996.

[56] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit,
J. Nieto, and E. Nebot, “FastSLAM: An efficient so-
lution to the simultaneous localization and mapping
problem with unknown data association,” J. Machine
Learning Research, 2004, to appear.

[57] M. Montemerlo, S. Thrun, D. Koller, and B. Weg-
breit, “FastSLAM 2.0: An improved particle filtering
algorithm for simultaneous localization and mapping
that provably converges,” in Eighteenth Int. Joint
Conf. Artificial Intelligence, Acapulco, Mexico, 9-
15 Aug. 2003, pp. 907–912.

[58] M. Montemerlo, “FastSLAM: A factored solution to
the simultaneous localization and mapping problem
with unknown data association,” Ph.D. dissertation,
School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 2003.

[59] O. King and D. A. Forsyth, “How does CONDEN-
SATION behave with a finite number of samples?”
in 6th Euro. Conf. Computer Vision, Dublin, Ireland,
26 Jun.-1 Jul. 2000, pp. 695–709.

[60] R. van der Merwe, A. Doucet, N. de Freitas, and
E. Wan, “The unscented particle filter,” Dept. En-
gineering, Cambridge University, Cambridge, UK,
Tech. Rep. CUED/F-INFENG/TR 380, 2000.

[61] W. E. L. Grimson, Object Recognition by Computer:
The Role of Geometric Constraints. Cambridge,
MA: MIT Press, 1991.

[62] Y. Chen and G. Medioni, “Object modeling by
registration of multiple range images,” in Proc. IEEE

Int. Conf. Robotics and Automation, Sacramento,
CA, 9-11 Apr. 1991, pp. 2724–2729.

[63] P. J. Besl and H. D. McKay, “A method for regis-
tration of 3-D shapes,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 14, no. 2, pp. 239–
256, 1992.

[64] S. Rusinkiewicz and M. Levoy, “Efficient variants
of the ICP algorithm,” in Proc. Third Int. Conf. 3-D
Digital Imaging and Modeling, Quebec City, Que.,
Canada, 28 May-1 Jun. 2001, pp. 145–152.

[65] I. J. Cox, “Blanche - an experiment in guidance and
navigation of an autonomous robot vehicle,” IEEE
Trans. Robotics and Automation, vol. 7, no. 2, pp.
193–204, 1991.

[66] F. Lu and E. Milios, “Robot pose estimation in un-
known environments by matching 2D range scans,”
J. Intelligent and Robotic Systems, vol. 18, no. 3, pp.
249–275, 1997.

[67] J. S. Gutmann and K. Konolige, “Incremental map-
ping of large cyclic environments,” in Proc. IEEE
Int. Symposium on Computational Intelligence in
Robotics and Automation, Monterey, CA, 8-9 Nov.
1999, pp. 318–325.

[68] B. Jensen and R. Siegwart, “Scan alignment with
probabilistic distance metric,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, Sendai, Japan,
28 Sep.-2 Oct. 2004, pp. 2191–2196.

[69] G. Weiss and E. V. Puttkamer, “A map based on
laserscans without geometric interpretation,” in Proc.
Int. Conf. Intelligent Autonomous Systems, Karl-
sruhe, Germany, 27-30 Mar. 1995, pp. 403–407.

[70] P. Biber, “The normal distributions transform: A new
approach to laser scan matching,” in IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, Las Vegas,
NV, 27-31 Oct. 2003, pp. 2743–2748.

[71] J. L. Crowley, F. Wallner, and B. Schiele, “Posi-
tion estimation using principal components of range
data,” in Proc. IEEE Int. Conf. Robotics and Au-
tomation, Leuven, Belgium, 16-20 May 1998, pp.
3121–3128.

[72] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and
E. Osawa, “RoboCup: the robot world cup initia-
tive,” in Proc. First Int. Conf. Autonomous Agents,
Marina del Rey, CA, 5-8 Feb. 1997, pp. 340–347.

[73] J. S. Gutmann, T. Weigel, and B. Nebel, “Fast,
accurate, and robust self-localization in polygonal
environments,” in Proc. IEEE/RSJ Int. Conf. Intel-
ligent Robots and Systems, Kyongju, South Korea,
17-21 Oct. 1999, pp. 1412–1419.

[74] J. Weber, K. W. Jörg, and E. V. Puttkamer, “APR
- global scan matching using anchor point rela-
tionships,” in 6th Int. Conf. Intelligent Autonomous
Systems, Venice, Italy, 25-27 Jul. 2000, pp. 471–478.

[75] M. Tomono, “A scan matching method using Euclid-
ean invariant signature for global localization and
map building,” in IEEE Int. Conf. Robotics and
Automation, New Orleans, LA, 26 Apr.-1 May 2004,

20

MECSE-27-2005: "A New Solution to the Simultaneous Localisation and ...", D. J. Spero and R. A. Jarvis



pp. 866–871.
[76] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “An

efficient fastSLAM algorithm for generating maps
of large-scale cyclic environments from raw laser
range measurements,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, Las Vegas, NV, 27-
31 Oct. 2003, pp. 206–211.

[77] C. Pradalier and S. Sekhavat, “Concurrent matching,
localization and map building using invariant fea-
tures,” in Proc. IEEE/RSJ Int. Conf. Intelligent Ro-
bots and Systems, Lausanne, Switzerland, 30 Sep.-5
Oct. 2002, pp. 514–520.

[78] P. M. Newman, “On the structure and solution of
the simultaneous localisation and map building prob-
lem,” Ph.D. dissertation, Australian Centre for Field
Robotics, University of Sydney, Australia, 1999.

[79] E. C. Tolman, “Cognitive maps in rats and men,” The
Psychological Review, vol. 55, pp. 189–208, 1948.

[80] J. Piaget and B. Inhelder, The Child’s Conception of
Space. New York: W. W. Norton, 1967.

[81] A. W. Siegel and S. H. White, “The development of
spatial representations of large-scale environments,”
in Advances in Child Development and Behavior,
H. W. Reese, Ed. New York: Academic Press, 1975.

[82] R. G. Golledge, Ed., Wayfinding Behavior: Cognitive
Mapping and Other Spatial Processes. Baltimore,
MD: Johns Hopkins University Press, 1999.

[83] D. M. Mark, C. Freksa, S. C. Hirtle, R. Lloyd,
and B. Tversky, “Cognitive models of geographical
space,” Int. J. Geographical Information Science,
vol. 13, no. 8, pp. 747–774, 1999.

[84] R. A. Brooks, “A robust layered control system for
a mobile robot,” IEEE J. Robotics and Automation,
vol. RA-2, no. 1, pp. 14–23, 1986.

[85] T. S. Levitt and D. T. Lawton, “Qualitative nav-
igation for mobile robots,” Artificial Intelligence,
vol. 44, no. 3, pp. 305–360, 1990.

[86] B. Kuipers and Y. T. Byun, “A robot exploration and
mapping strategy based on a semantic hierarchy of
spatial representations,” Robotics and Autonomous
Systems, vol. 8, no. 1-2, pp. 47–63, 1991.

[87] D. J. Spero and R. A. Jarvis, “Towards exteroceptive
based localisation,” in IEEE Conf. Robotics, Automa-
tion and Mechatronics, Singapore, 1-3 Dec. 2004,
pp. 822–827.

[88] ——, “On localising an unknown mobile robot,”
in 2nd Int. Conf. Autonomous Robots and Agents,
Palmerston North, New Zealand, 13-15 Dec. 2004,
pp. 70–75.

[89] L. G. Shapiro and R. M. Haralick, “Structural de-
scriptions and inexact matching,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. PAMI-
3, no. 5, pp. 504–519, 1981.

[90] H. R. Everett, Sensors for Mobile Robots: Theory
and Application. Wellesley, MA: A. K. Peters,
1995.

[91] R. A. Jarvis, “Range sensing for computer vision,”

in Three-Dimensional Object Recognition Systems,
A. K. Jain and P. J. Flynn, Eds. Singapore: Elsevier,
1993.

[92] M. Hebert, “Active and passive range sensing for
robotics,” in Proc. IEEE Int. Conf. Robotics and
Automation, San Francisco, CA, 24-28 Apr. 2000,
pp. 102–110.

[93] M. Kam, X. Zhu, and P. Kalata, “Sensor fusion for
mobile robot navigation,” Proc. IEEE, vol. 85, no. 1,
pp. 110–119, 1997.

[94] D. J. Spero and R. A. Jarvis, “3D vision for large-
scale outdoor environments,” in Australasian Conf.
Robotics and Automation, Auckland, New Zealand,
27-28 Nov. 2002, pp. 228–233.

[95] D. R. Chand and S. S. Kapur, “An algorithm for
convex polytopes,” J. Association for Computing
Machinery, vol. 17, no. 1, pp. 78–86, 1970.

[96] R. A. Jarvis, “On the identification of the convex hull
of a finite set of points in the plane,” Information
Processing Letters, vol. 2, no. 1, pp. 18–21, 1973.

[97] M. Bern and D. Eppstein, “Mesh generation and
optimal triangulation,” in Computing in Euclidean
Geometry, D. Z. Du and F. Hwang, Eds. Singapore:
World Scientific, 1992, pp. 23–90.

[98] H. G. Barrow and R. M. Burstall, “Subgraph iso-
morphism, matching relational structures and maxi-
mal cliques,” Information Processing Letters, vol. 4,
no. 4, pp. 83–84, 1976.

[99] P. M. Pardalos and J. Xue, “The maximum clique
problem,” J. Global Optimization, vol. 4, pp. 301–
328, 1994.

[100] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys, Eds., The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimiza-
tion. Chichester: Wiley, 1985.

[101] A. Schrijver, “On the history of combinatorial opti-
mization (till 1960),” in Handbooks in Operations
Research and Management Science, K. Aardal, G. L.
Nemhauser, and R. Weismantel, Eds. Amsterdam:
Elsevier, 2005, vol. 12, ch. 1. [Online]. Available:
http://citeseer.ist.psu.edu/466877.html

[102] R. Chatila and J. Laumond, “Position referencing
and consistent world modeling for mobile robots,” in
IEEE Int. Conf. Robotics and Automation, St. Louis,
MO, 25-28 Mar. 1985, pp. 138–145.

[103] F. Lu and E. Milios, “Globally consistent range scan
alignment for environment mapping,” Autonomous
Robots, vol. 4, no. 4, pp. 333–349, 1997.

[104] S. Thrun, W. Burgard, and D. Fox, “A real-time al-
gorithm for mobile robot mapping with applications
to multi-robot and 3D mapping,” in Proc. IEEE Int.
Conf. Robotics and Automation, San Francisco, CA,
24-28 Apr. 2000, pp. 321–328.

[105] J. H. Saleh, “Perspectives in design: The Deacon’s
masterpiece and the hundred-year aircraft, space-
craft, and other complex engineering systems,” J.
Mechanical Design, 2005, to appear.

21

MECSE-27-2005: "A New Solution to the Simultaneous Localisation and ...", D. J. Spero and R. A. Jarvis

http://citeseer.ist.psu.edu/466877.html

	Abstract
	I Introduction
	II Related Work
	II-A The Estimation-Theoretic Approach
	II-B Other Probabilistic Approaches
	II-C Scan Matching
	II-D Qualitative Approaches

	III The Kidnapped Way
	III-A Landmark Detection
	III-B Multiple-Hypothesis Data Association
	III-C Positional Error Representation and Handling
	III-D Pathological Cases
	III-E Pulling in the Reins

	IV Conclusions and Future Work
	References

