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1 Introduction

The ability to realistically capture human motion presents numerous opportunities for real world applica-
tions, ranging from human computer interaction interfaces to computer animation and control in movies
and computer games. Currently to accurately capture human motions, magnetic or optical markers are
systematically attached to an actor and an expensive calibrated system is used to capture the positions of
these markers as the actor performs the required motions. The main disadvantages of attaching markers
are the restriction imposed on the actor’s motion and the cost of a system specifically designed to track the
markers. The aim of this research is to develop a multiple cameras capturing system that will be able to
realistically capture human pose1 without the use of any markers.

∗e-mail: therdsak.tangkuampien@eng.monash.edu.au
†This technical report was written to fulfil the requirements for a conversion from a research masters candidature in Engineering Science to the degree of

Doctor of Philosophy. The author has been a postgraduate student by research at the Department of Electrical and Computer Systems Engineering, Monash
University since June 2004. This research work is conducted under the main supervision of A/Prof David Suter. Institute of Vision System Engineering,
Monash University. Results and updated information can be found at: http://www-personal.monash.edu.au/∼therdsak/postGrad.htm

1Pose - a collection of hierarchical joint angles defining the stance of a person at a point in time - Acclaim Motion Capture format, Section 3.1
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The research aims to investigate the possibility of applying non-linear manifold learning techniques like
Locally Linear Embedding (LLE) and Kernel Principal Component Analysis to aid in motion capturing.
An accurate 3D mesh of the actor (Figure 1), created from point cloud data captured by a laser scanner is
used to generate synthetic 3 dimensional representation of the actor in virtual space. A large set of poses
ranging the space of possible human motion is then used to animate the mesh and the resultant images
captured by virtual cameras. The virtual cameras are calibrates to have the same intrinsic and extrinsic
parameters as the real-world cameras that will be used for motion capture. Provided that the synthetic
image data is well sampled, the set of all possible images of the mesh should lie on a common lower
dimensional manifold as the one generated by the set of possible human poses. This intuition is based on
the idea that in a constant and controlled environment, the images of an actor captured by cameras with
static intrinsic and extrinsic parameters should mainly be dependent on the current pose (joint angles) of
the person at that particular frame. Given a new set of real images of the actor at timet, the system can
then project the captured image data onto the synthetic common manifold. Once on the manifold, the
poses that produce the closest set of synthetic images to the captured images can be used to determined
the output pose.

The main steps performed within our markerless camera based motion capture system are summarized
below:

1. Generate an Accurate Mesh of the Actor - Section 4- In the initialization step, a laser scanner is
used to obtained accurate point cloud data of the actor. Radial Basis functions are fitted to the point
cloud and resampled to generate a static mesh of the actor in virtual reality space.

2. Create a Deformable Mesh - Section 3- A generic skeleton structure is placed inside to mesh. The
mesh is then skinned and converted to a deformable mesh. After skinning, the mesh can be animated
by loading the motion capture pose onto the inner skeleton structure.

3. Generate Training Data with the Mesh - A training motion capture file containing sampled set of
poses ranging all the possible stances reachable by the human skeleton are generated. Each pose in the
training set is loaded into the deformable mesh to generate its 3 dimensional representation in virtual
space.

4. Set up Virtual Cameras in Virtual Reality Space - Virtual cameras with the same intrinsic and
extrinsic parameters as the real cameras (for motion capture) are created in virtual reality. For each
pose, the set of synthetic images of the 3D mesh as it would appear in the real cameras are captured
and linked to the original pose. All the other parameters like lighting, camera positions, etc are kept
constant during the training process.

5. Generating the Common Manifold - Determine thecommonmanifold shared by the synthetic im-
ages and the set of training poses. This is possible because each set of synthetic images captured in the
virtual cameras is mainly dependant on the pose that was loaded into the mesh (all the other variables
are kept constant).

6. Pose Estimation from Manifold Projection - Once the system has been trained with synthetic data,
real images of the person can be captured by real cameras. The captured images can then be prepro-
cessed and projected onto the common manifold, where it can find it closestk neighbouring poses
and the relative distances between them on the manifold. The output pose can then be generated as a
linear combination of thek closest neighbours in pose space.
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2 Literature Review

The problem of accurately capturing human motion with expensive equipment and sensors is a well solved
one. The main disadvantages with these methods are the cost and time required to set up the motion capture
system. Sensors need to also be connected to the actor and calibrated before capture, not to mention the
constraints imposed on the actor as a result of these sensors. Since the aim of this project is to implement
a flexible marker-less capture system, only the literature in this field will be discussed. However in the
future it will be useful to compare the results from a marker-less system, with those of other marker based
systems.

2.1 Multiple Cameras Motion Capture

The first few problems usually encountered when trying to implement an accurate camera based capturing
system are those of occlusion and loss of dimensionality, because the goal of such a capturing system
is to find 3D poses from 2 dimensional images. To avoid these problems, multiple cameras are set up
surrounding the actor, and the set of images at framet are segmented and processed to provide voxel
information [Mikić et al. 2002][Theobalt et al. 2002]. The obvious advantage of such a system is the
reduced constraints on the possible motions of the actor, as he will not have any sensors attached. However,
the cameras will need to be well calibrated and will involve complex set up procedures every time the
cameras are re-positioned. Furthermore, because voxels are usually generated from segmented pixels in
the image space, the quality of the voxel carved out will also be dependant on the segmentation. The
manifold motion capture technique that we plan to implement will also initially work with segmented
data. However we plan to investigate the possibility of de-noising using manifold projection of badly
segmented (noisy) data. We propose that if perfectly segmented synthetic data are used to generate the
training manifold of possible motions, then any new input with noise (including segmentation noise) can
be projected onto the manifold for noise reduction.

From the voxel or segmented data, a generic skeleton stick figure adjusted to the most probable pose is
fitted into the voxel space. A tracking filter, such as a Kalman filer [Welsh and Bishop 2001] is then
applied to the joints of the skeleton from prediction and correction, or to implement a form ofAnalysis
by Synthesis. Analysis by synthesis is a popular method in motion capture, where the pose obtained
is applied to a human model and mapped back to the image space. In this space, the synthesized data
is compared to the input images and the resultant pose corrected in order to minimize a predefined loss
function. Another common constraint used by many segment based motion capturing systems ([Theobalt
et al. 2002],[Moeslund and Granum 2003]) is to limit the pose captured to within the range of possible
joint rotations reachable by the human skeleton. An example of this restriction would be to limit the hinge
joint of the elbow to have only one degree of freedom.

Other factors affecting the accuracy of a capturing system with feedback for error minimization are the
model used in tracking, and how closely the bone structure and model’s outline matches that of the person
being captured. With advances in processors and graphics devices, it is now possible to generate an
accurate mesh of a person and deform the mesh to create realistic human animation [Luna 2004]. This
report briefly covers the process of obtaining this accurate mesh model (Figure 4) and how a generic
skeleton can be placed inside the model to create a dynamic skinned mesh (Section 4 - Mesh Generation
and Skinning). From an analysis by synthesis point of view, it is now possible to use the skinned mesh to
generate accurate synthetic silhouette models, which can then be used in the calculation of the errors in
the image space.
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2.2 Statistical Analysis of Human Motions

Due to the high level of co-ordination in human movements, a high percentage of human motions will
intrinsically lie on a low dimensional manifold. [Safonova et al. 2004] and [Bowden et al. 2000] both use
Principal Component Analysis (PCA) in order to represent the motion data using a reduced numbers of
principal components. At this point it is important to point out the difference between the two. [Safonova
et al. 2004] applied PCA to the joints angles of the already captured motion over time, in order to determine
a low dimensional manifold of a motion set. [Bowden et al. 2000], and [Ham et al. 2003](to a different area
of research) both applied PCA in pixel space of an image of a person at timet to represent the pixel data
in lower dimensionsD, whereD� Pn (number of pixels in the image) so that any further data processing
can be performed in this reduced dimension. Since the goal of this research is to determine the pose (joint
angles) of a person from images, only related literature in the area of Principal Component Analysis on
image data will be discussed.

Figure 2: Diagram to show how the pixel data in the images representation the pose of a person can be reduced by linear PCA
and projected onto a lower dimensional manifold. The manifold data shown on the right is generated from a well sampled set
of images of an actor rotating his left arm.

The problem of human motion capture using cameras can also be viewed as an semi-supervised learning
problem. We can use a 3D mesh of the actor and generate synthetic images of him/her as they would
appear in the cameras. These images are then segmented, cropped, resized and rearrange to obtain a
set of high dimensional training vectors. PCA is then performed on this set of high dimensional synthetic
vectors (Figure 3 - synthetic training set). The firstD principal components where variance of the projected
training data are more than zero are retained. Given new images of the actor captured from real cameras,
these images can be pre-processed using the same steps as applied to the synthetic data and projected onto
theD principal components.

Once re-expressed on the principal axis, a non-linear method like Support Vector Machines (SVM [Vapnik
1995],[Cristianini and Shawe-Taylor 2000]) regression can be used to map the data onto an even lower
dimensional manifoldd, whered � D. This is obviously provided that we have enough corresponding
data points to train the SVM. However, the usual problem encountered when using SVM is how to go
about selecting the kernel function and it’s parameters so that the training data can be mapped to an
optimal feature space in high dimension for fitting. Another potential obstacle with SVM when applied
to this problem is that we are trying to map high dimensional segmented pixel data of a person to high
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Figure 3: Diagram to summarize how the synthetic data is preprocessed before Principal Component Analysis is preformed on
on the rearranged pixel data.

dimensional pose space (approximately 28 dimension of angles for the human body) representing the
person’s stance. In order for regression to work effectively, there needs to be a smooth mapping function
between these two high dimensional space. For all we know this problem may not even be well-posed and
a smooth mapping may not even exist.

A usual way to avoid the complex problem of determining the kernel function and its parameters for the
SVM is to bypass the Kernel function calculation completely and go straight to finding the Gram matrixK,
comprising of the kernel mappings between the training points2. Manifolds learning methods like Locally
Linear Embedding (LLE)[Saul and Roweis 2003] and Kernel Matrix Learning using Semidefinite pro-
gramming (SDE)[Weinberger and Saul 2004][Weinberger et al. 2005] can be used to determine this Gram
matrix, which can then be used to determine the lower dimensional manifold. The immediate advantage
of performing data processing in low dimensional space is obvious in terms of memory consumption and
speed. Another not so obvious advantage is the ability to use the manifold to eliminate noise in the images,
as shown by [Mika et al. ] via the use of Kernel PCA [Scholkopf and Smola 2002]. By assuming that a
new noisy input image will map to a lower dimensional space not on the manifold of the training set, this
report shows how to project the new noisy input point onto the manifold (using LLE) for noise reduction
and presents how this is similar to kernel PCA de-noising as well as results to support this assumption in
terms of motion capture.

3 Motion Capture File Format

This section covers the desired format of the output data from a typical multiple camera motion capture
system. Standard motion capture file format usually stores rotation transformation for each articulated

2The simplest case of the Kernel matrix is one where the kernel function is a simple dot product in input space. A value in the Kernel Matrix in this case is
simply just a way of comparing how close two vectors are by linearly projecting one onto another - more details will be covered in Section 5
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bone relative to a start pose. A standard start pose used in this research is aTposewith the actor standing
with arms stretched out horizontally. In order to achieve animation, the joint rotations from each framet
are applied to each bone of the skeleton hierarchically starting from the root (pelvis) bone. The resultant
images are then rendered at high speed onto the screen. Due to the hierarchical structure of the skeleton,
only rotation and translation information need to be applied to the root bone (pelvis) in order to move or
orientate the entire skeleton. As shown in Figure 4, the main goal of an image based motion capture system
is to then determine these joint rotation data from images of a person and store it in a file structure so that
it can be applied to a skeletal model for animation. Note that in the diagram, we included a segmented
outline of a person as the image to use to determine the joint rotation. This, however, does not mean that
the image based systems are only limited to working with segmented data.

Figure 4: Images to show the input (left) and the output format (right) of an image based motion capturing system.

There are 2 motion formats that are used in this project to store hierarchical rotation motion, the Ac-
claim Motion Capture and the DirectX format. AMC format was chosen due to high numbers of marker-
based motions that are already available at the Carnegie Mellon University Graphics Lab Motion Capture
Database and various other web sites. DirectX format was chosen because of its ability to deform a skinned
mesh at high speed using built in DirectX graphic functions. The advantage of this deformable mesh will
become clear at a later stage, when we try to generate training data for motion capture in Section 5. Both
formats, however, are similar because they use the same skeletal hierarchical structure starting from the
root (pelvis) node to the leave nodes at the hands and feet, and store their rotation information relative to
a start pose. The only standout difference between the two formats is the way these relative rotation data
are recorded.
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3.1 Acclaim Motion Capture (AMC) Format

The Acclaim motion format stores joint rotation using euler angles.Each joint in an animation frame will
have associated with it 3 euler rotations. For ball and socket joints like the shoulder joint, all 3 rotations
(rx, ry andrz) will be used. For hinge joints, like the knee and elbow joints, only one degree of rotation
will be used, with the others set to zero. The use of euler rotations does have disadvantages, like the
problem of gimbal locks3. For animation storage, euler rotations are sufficient as it is possible to generate
all possible points on a unit sphere using a set of euler rotations, even though there may not be a one to one
mapping. In this research, an articulated skeleton with static bone structure is used for each actor, hence
the assumption that a normalized joint rotation will lie on a unit sphere. We are interested in capturing the
overall motion of a person and therefore chose to ignore the small joints like the wrists, fingers and toes.
An animation frame can then be represented by a vector of euler angles (pose), and animation achieved by
sequentially rendering using these pose vectors. A set of poses, as defined in section 1, is then simply just
these set of euler vectors.

3.2 DirectX Motion Format

DirectX format stores its joint rotation as a 4 by 4 homogeneous matrix. The first 3 columns and rows
represent a simple rotation matrix and can easily be generated from euler rotations by concatenating the
rx,ry andrz rotations in the correct order (Figure 5). The other entries in the homogeneous matrix store
the bone’s length, width and distance relative to it’s parent bone. Due to the fact that we are working
with articulated skeletons with static bones, these values can be left unchanged and ignored in the motion
capturing process.

Figure 5: Images of the 2 different file formats (Acclaim Motion Capture and DirectX) used in this research.

3The loss of a degree of rotation when the rotation axis align as a result of the first or second euler rotation.
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3.3 Rendering Deformable Mesh in DirectX

DirectX file format also has built in templates for vertex blending of deformable mesh. A mesh is a col-
lection of triangles that join together to create a surface. Each triangle is dependant on it’s corresponding
vertices, which are shared by other triangles in a mesh. The ability to deform a mesh to display human
motion can be viewed differently as the ability to move these vertices in such a way, that when the trian-
gles are rendered using these vertices, a realistic model of the person is formed in virtual reality. DirectX
produces deformable mesh animation by using vertex blending [Luna 2004], a process where each vertex
in the mesh is assigned a weight factor, which basically stores how much each bones in the skeleton affects
each particular vertex. The more weight a vertex has for a particular bone, the more it is affected by that
bone’s transformation matrix. In DirectX the weightswk

i for eachkth vertexvk summed overNb bones in
the skeleton must add up to one:

Nb

∑
i=1

wk
i = 1 (1)

The calculation of the position of each vertexvk
t at framet in the animation is then simply a weighted linear

combination of the vertexvk
s transformed by the correspondingith bone’sfinal combined transformation

matrix Fi . Herevk
s is the vertex position at the starting Tpose. The final combined transformation matrix

Fi is highlighted to distinguish it from the combined transformation matrixCi , which is calculated as a
concatenation of each bones homogeneous (local) transformation matrixLi as follows,

Ci = Li ∗Cpi (2)

whereCpi is the combined transformation of the parent of theith bone.

In summary the local matrixL transform a bone relative to it’s parent bone. The combined matrixC
transforms a bone relative to the origin of the world space. For the case where we are only concerned with
orientation (i.e. pelvis root node fixed at the world origin), the matrixC defines a transformation relative
to the root node as shown in Figure 6. The combined final transformation matrixF transforms a bone
relative to it’s starting Tpose.Fi is calculated as shown below,

Fi = Ci ∗O−1
i (3)

whereOi is the offset matrix and transforms the correspondingith bone from the world origin to it’s
orientation in the Tpose stance. Once all the final combined transformation matrices have been calculated,
each vertexvk

s is mapped tovk
t at timet according to the equation below,

vk
t =

N

∑
i=i

wk
i F

t
i vk

s (4)

The only thing left to calculate before we can animate realistic deformable mesh from motion capture data,
is the directX weight matrixWdx, which composes of the set ofk weight vectorswi used in Equation 4.

MECSE-30-2005: "Multiple Cameras Human Motion Capture using Non-linear Manifold ...", T. Tangkuampien



Figure 6: Example to show the mapping as a result of a Local transformationLi and a Combined transformation matrixCi with
the root node at the origin in world space.

3.4 Creating a Skinned Mesh

The process of transforming a static mesh to a mesh with deformable surface (skin) is sometimes called
skinning. This explains the reason why a deformable mesh is sometimes called a skinned mesh. In this
research project the skinning of a mesh (which can be worded differently as the problem of determining
the weight matrixWdx) is performed in 3D Studio Max, before exporting the resultant skinned mesh to
DirectX format for rendering.

In 3DSmax, the weights for each vertex are allocated according to the diagram in Figure 7. Eachith bone,
is then assigned two closed ended surfaces as shown by the white and black ellipsoids in the image. All
the verticesvk in the mesh that lies inside this white inner closed surface will then be assigned the weight
wk

i of 1, indicating that they are only dependant on theith bone, and no other bones in the skeleton. All the
vertices that lies outside the bigger black closed surface, will be assigned a weightwk

i of zero, indicating
no relation to theith bone. The vertices between the two closed ended surfaces will be assigned weights
relative to how far they are between the surfaces. Usually a linear or low order polynomial function
is used as a fall off function between the surfaces. Therefore in order to transform a static mesh to a
skinned mesh, all we need to do is use a skeletal structure that snugly fits in the mesh, then define the
bones’ closed ended surfaces and the polynomial fall-off functions. The process of skinning a mesh is
then simply the calculation of the weight matrixWdx from these surfaces and exporting the static mesh
with the weight matrix and hidden skeleton in the same DirectX file. The weight matrix will then ensure
that during animation, the vertices in the mesh are smoothly transformed by each bones’ final combined
transformation matrixFi and weighted accordingly. Triangular patches are then constructed using these
transformed vertices to produce the animation of smooth and realistic deformable mesh.
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Figure 7: Diagram to show the skinning process in DirectX.

4 Accurate Mesh Generation

By making use of the skinning technique covered in section 3.4, it is now possible to create realistic mesh
animation of any static human mesh by fitting in the skeleton and calculating the weight matrixWdx, before
exporting both the inner skeleton and mesh for DirectX animation. In this section we move onto how to
go about obtaining an accurate mesh of the actor whose motion is being captured. There are various
methods that can be used to obtain 3D models ranging from methods using multiple cameras [Hilton
et al. 2000],[Hilton et al. 1999] on segmented image data to techniques using Radial Basis Function [Carr
et al. ] to fit a smooth function to noisy point cloud data for resampling. We plan to design a capturing
system that will be able to make use of mesh models generated from camera images. This point coupled
with the ability to re-train the mesh in any synthetic camera views adds to the flexibility of the system
and enables it to capture motions at any angles. At present, however, the project uses a laser scanner to
capture the person’s point cloud data and from that, a mesh is generated4. Even though the input data and
processing of the camera based and laser scanner based systems are different, the resultant output from
the methods are the same, in that there are both a collection of vertices defining a surface of connected
triangles. Currently, we have an ongoing project which aims to generate an accurate mesh from views
in multiple cameras. We plan to eventually merge these two projects and use the camera based mesh to
generate training data, hence creating a capturing system which is truly cheap and flexible.

4.1 Laser Scanner Model Capture

In this research project,the accurate human mesh is calculated from the point cloud data obtained from
using the Riegl LMS-Z420i Terrestrial Laser Scanner (equipped with a calibrated Nikon D100 6 Mega
Pixel digital camera to capture images for model texturing - section 11). The scanner is used to capture
point cloud data of the front and back of the actor as shown in Figure 8.

4The accurate mesh generated from the laser scanner will be used for training of the capturing system and ground truth for debugging and testing.
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Figure 8: Diagram to show how a person’s point cloud data is captures using the Riegl laser scanner.

The actor is requested to have his/her arms stretched horizontally on vertical stands so as to ensure that
the mesh model generated from the captured point cloud is that of a Tpose. Another advantage of initially
capturing a model in a Tpose is that the resultant static mesh is easier to skin and are less likely to suffer for
unrealistic surface deformation. Once the front and back point clouds have been captured, the RiSCAN
PRO software is used to eliminate unwanted information like points corresponding to the wall or floor
plane. Once all the unwanted information has been eliminated, the back point cloud scan is rotated about
the vertical axis and joined to the frontal scan, to create full point clouds data of the actor.

4.2 Radial Basis Function (RBF) for Mesh Smoothing

The next step in the creation of an accurate deformable mesh is to convert the full point cloud data to a
realistic and smooth mesh. This is achieved in this project by implicitly modelling a smooth surface with
Radial Basis Functions (RBF) generated from point cloud data [Carr et al. 2001]. A radial basis function
is a function consisting of a low degree polynomial and a weighted sum of translated symmetric basis
functions. An RBF functionS(x) can be constructed as follows:

S(x) = p(x)+
N

∑
i=1

γiψ(x−xi) (5)

where p is a low degree polynomial andγiψ(x− xi), the basis function centered around the pointxi ,
weighted by the coefficientγi . When supplied with the set of input dataxi and the corresponding output
valuesfi onS(x), the problem of determining the radial function can be restated as a linear system,
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γ

c

)
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(
f
0

)
(6)

whereP is a matrix of the monomial basis for the base polynomialp in Equation 5, andc the coefficients.
A in this case is the vector of radial basis functionsψ(x−xi). The top row of the linear system basically
ensures the condition stated in equation 5. The bottom constraint is a result of choosingS(x) from (BL(2))
Beppo-Levi space, hence implying the orthogonality condition:

N

∑
i=1

γi =
N

∑
i=1

γixi =
N

∑
i=1

γiyi =
N

∑
i=1

γizi = 0 (7)

In summary, in order to find a smooth static human mesh fromN input points, an RBF surfaceS(x) needs
to be calculated, where

S= {s∈ BL(2)(R3) : s(xi) = fi , i = 1,2, ......,N} (8)

OnceS(x) has been found, the mesh is generated by regular sampling the RBF in a regular grid. The only
problem left now is to findfi for eachxi , such that a smooth RBFS(x) can be generated and resampled.
The simplest solution is to assignfi = 0 for all xi and then resampled the resultant Radial Basis Function at
S(0). The problem with this solution is that it leads to the trivial solution ofS(x) = 0 for all points inR3. In
order to prevent this from happening we need to generate training pointsxi where fi 6= 0. This is achieved
by generating off surface points from the original point cloud data, and labelling it’s correspondingfi as
either more than zero or less than zero for outside and inside point respectively.

Figure 9: Set of images to show how to generate a human mesh using radial basic functions.

MECSE-30-2005: "Multiple Cameras Human Motion Capture using Non-linear Manifold ...", T. Tangkuampien



As shown above, original capture points from the laser scanner (green circles) are assignedfi = 0, thereby
ensuring that the scanned points lie on or as close as possible to the radial basis function at S(0). From
these scanned data points, neighbours are used to generate linear planes, from which off surface outer
and inner normals are determined. Outside surface points (red circle) are then generated from these outer
normals and assigned (tofi) the corresponding positive normal distance values from the linear plane. The
same procedure is performed on the inner normals to generate inner point clouds (blue circle) except the
negative normal distances are now assigned tofi . The labelled scanned data points, appended with the
labelled off surface points are then used to form the linear systems. The mesh is then generated by solving
for S(x) and then resampling atS(0).

Figure 10: Resultant RBF Mesh generated by using Radial Basis FunctionS(x) sampled atS(0).

The only problem with solving this system of linear equation is that it is computationally expensive (order
N3) and this cost rapidly increases asN, the number of points (inclusive of both scanned and off surface
points) increases. In order to avoid this expensive cost, an evaluation version of Farfield Technology’s fas-
tRBF Matlab toolbox was used to generated the mesh. The fastRBF toolbox uses approximation methods
to find the radial basis functionS(x) such that the maximum fitting and evaluation error,

f itting errormax= max|S(xi)− fi |, f or i = 1,2, ......,N (9)

evaluation errormax= max|S(xi)−ai |, f or i = 1,2, ......,N (10)

lie below a predefined fitting and evaluation threshold. In the above equations,ai is the approximate value
of the RBF when it is resampled in order to obtain the static mesh atS(0). The resultant static mesh
generated from the Matlab FastRBF toolbox is shown in Figure 10.

4.3 Mesh Texturing

Once the static mesh has been generated from the RBF, it is then possible to texture the mesh using
predefined DirectX templates. In DirectX, a two dimensional template spaceTs(x,y) is defined forx∈ [0,1]
andy∈ [0,1], as shown in the left image in the diagram below.

In the mesh texturing process, each vertexvk in the skinned mesh is then assigned a positionTs(x,y)
in the texture bitmap. During the rendering process, before each triangle is to be drawn on screen, the

MECSE-30-2005: "Multiple Cameras Human Motion Capture using Non-linear Manifold ...", T. Tangkuampien



Figure 11: Diagram to show how texturing is performed in DirectX.

correspondingTs(x,y) locations in the bitmap to the triangle’s vertices are found and the enclosed colour
values captured and mapped onto the mesh. As mentioned earlier in section 4.1, images of the actor
can also be captured with the point cloud data using the Riegl LMS-Z420i Terrestrial Laser Scanner. In
future work, we plan to texture map these captured images (shown in the right images of Figure 11) onto
the RBF mesh by developing an algorithm to automatically determine the correspondingTs(x,y) for each
vertexvk in the RBF mesh. Towards the end of this report, we also explain the possible advantages of
using accurate textured skinned mesh models to generate training data in multiple cameras, and how it can
easily be appended onto the current segment based motion capture technique suggested in section 6. Once
an accurate mesh of the actor is generated, we can use the mesh to generate synthetic images of the actor
in the cameras. This report now shows how to perform statistical techniques like PCA on the image data
before using the processed data to determine a manifold of possible human motions.

5 Dimensionality Reduction and Manifold Learning Techniques

This section covers three dimensionality reduction techniques5 (Principal Component Analysis (PCA),
Kernel PCA and Locally Linear Embedding (LLE)) which can be applied to the data from the camera
images to obtain joint angle rotations for motion capture. PCA is a linear reduction method which redefines
the original input data as a weighted linear combination of the principal components, which are arranged in
order of decreasing variances of the training data. Kernel PCA [Scholkopf and Smola 2002] is a non-linear
extension of PCA where input data points6, Xi are first non-linearly mapped to a higher dimensional space

5This section discusses the non-linear manifold learning technique used in the motion capture system in great mathematical details. Readers who are
only interested in how manifold learning can be applied to the motion capture system (rather than how to calculate lower dimensional manifolds from high
dimensional data) should skip this section.

6The capitalXi is used in this case to represent thecentereddata point and to distinguish it from the scanned input pointsxi used to generated the RBF
mesh.
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via a predefined kernel function, before performing standard PCA in this feature space. As discussed
earlier in section 2.2, it is usually a complex process to determine the optimal Kernel function (if one
exists), and this section therefore shows how it is possible to perform kernel PCA when only the kernel
(Gram) matrix is available. In the final part of this section we explore the idea of Kernel PCA de-noising
[Mika et al. ] via the use of LLE [Saul and Roweis 2003] and show how it is possible to obtain the Kernel
Matrix via this non-linear manifold learning technique [Ham et al. 2004].

5.1 Principal Component Analysis

Principal Component Analysis [Jolliffe 1986] is a linear dimensionality reduction where new orthogonal
axis are formed from a linear combination of the original axis. These new axis, referred to as principal
components are constructed in such a way that the variance of the input data projected onto these principal
axis are maximized on the first few components. PCA has been applied to many applications such as data
compression or de-noising, where the original data are centered and projected onto the first pre-selected
numbers of principal components in order to retain as much of the information as possible, whilst ignoring
the projections onto the other lower variance axis, and regarding them as noise. The Principal axis can be
obtained from the input data by diagonalizing the covariance matrix,

C =
1
N

N

∑
j=1

XjX
T
j (11)

and solving the eigenvalue problem

λv = Cv, λ ≥ 0 and v ∈ RPn (12)

wherePn is the original dimension7 of the data. The eigenvaluesλi is proportional to the total percentage
energy of the data set stored on the corresponding eigenvectorvi after the projection. Therefore in order
to obtain the firstk principle components of a data set, the eigenvectors and eigenvalues of the covariance
matrixC are first calculated. The eigenvectors are then ordered by decreasing eigenvalues, and the firstk
eigenvectors are then selected as the firstk principal components of the data set.

5.2 Kernel PCA

Kernel Principal Component Analysis [Scholkopf and Smola 2002] is a non-linear extension of PCA, and
basically involves mapping the original input data to a higher dimensional Feature spaceF via a non-
linear functionΦ. Once in this feature spaceF , standard linear PCA is then performed, and the non-linear
Kernel PCA problem can then be similarly restated as the diagonalization of the mapped covariance matrix
in Feature space

C =
1
N

N

∑
j=1

Φ(Xj)Φ(Xj)T (13)

7The symbolPn is used here to distinguish it from theN used in section 3 and to emphasize that the original dimension for input data to PCA as used in this
research is the number of pixels in an image.
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From this matrix the firstk kernel principal components are selected from the set of ordered eigenvectors
V of C, where

λV = CV, λ ≥ 0 and V ∈ RN (14)

The termN in this instance refers to the number of input in the data (training) set8. Similarly, we can
expressed each kernel principal componentsVn in dual format as a linear combination of the mapped
feature points, whereα represents the coefficient of the principal components

V =
N

∑
i=1

αiΦ(Xi) (15)

The de-noising of a new data pointX is then achieved via Kernel PCA by mapping the data point to the
Feature space viaΦ, and then projecting the mapped point onto the firstk kernel principal components of
V and discarding the rest. This projection can be achieved via a dot product in Feature space,

(Vn ·Φ(X)) =
M

∑
i=1

α
n
i (Φ(Xi) ·Φ(X)) (16)

Due to the fact that Kernel PCA can be performed using the dual format above, the problem of explicitly
determiningΦ is usually avoided and a kernel functionK is usually chosen, where

K(Xi ,X) = (Φ(Xi) ·Φ(X)) (17)

The selection of this functionK such that it is a kernel and represents a dot product in feature space
presents yet another new problem, but if we ensure that the Gram matrixK generated fromall the input
points, where

K i j = (Φ(Xi) ·Φ(Xj)); i, j = 1,2, .....,N (18)

is positive semi-definite (has non-negative eigenvalues), then by Mercer’s theorem, the functionK is a
kernel. Substituting this into equation 16, the projecting of a synthetic point in the training set can be
projected onto the kernel principal components as follows,

(Vn ·Φ(Xj)) =
M

∑
i=1

α
n
i (Φ(Xi) ·Φ(Xj)) =

M

∑
i=1

α
n
i K i j (19)

Using the equation above, to find the projection of a pointXj onto the principal componentVn, we need
to determine the Gram matrixK and the coefficients ofα. [Scholkopf and Smola 2002] showed that it is
possible to calculateα by substituting equation 15 into equation 14, and rearranging to obtain

Mλα = Kα (20)
8The use ofN here is similar to the use ofN in the generation of the radial basis function mesh in section 4.2 in that they both represents the total number

of data points.
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and showing thatα is in fact the eigenvectors of the Gram matrixK . Therefore the problem of Kernel
PCA can be reduced down to finding a positive semi-definite Gram matrix9 K from the data set such that
the variance is maximized over the first few kernel principal components ofV. The disadvantage with the
kernel projection expression in Equation 19 is that it is defined only for points originally within the set. In
de-noising, it is usually the case that kernel PCA will need to be applied to a new pointX, not originally in
the set. Later in section 5.3, we introduce the use of Locally Linear Embedding (LLE) and shows how to
use LLE to obtain a positive semi-definite Gram matrixK and its relation to Kernel PCA. Later in section
??, we also show how it is possible to take advantage of this relation between LLE and Kernel PCA, and
use LLE to project new pointX onto a manifold hence avoiding the problem of mapping new points via a
kernel function in Kernel PCA.

5.3 Locally Linear Embedding (LLE)

Locally Linear Embedding [Saul and Roweis 2003] is a non-linear dimensionality reduction method
whereby low dimensional data are regenerated from awell-sampledhigh dimensional data, whilst pre-
serving euclidian distance ratio between local neighbours. Basically given a training set ofN points in
high dimensional spaceRD, LLE expresses each high dimensional vector in the training set as a linear
combination (dual format) of it’sk neighbours. A cost function is then defined that measures the quality
of this reconstruction,

ε
r(W) = ∑

i
|−→Xi −∑

j
Wi j

−→
Xj |2 (21)

The weightWi j summarizes the fraction of theith vector in the training that can be synthesized from thej th
vector in the same set. If thej th vector is not a neighbour of pointi, thenWi j will be set to zero. Another
constraint imposed by LLE is that∑ j Wi j = 1, which together with equation 21 ensures that every output
point in the training set are invariant to rotations, rescalings and translations between itsk neighbours.
Once the matrixW has been calculated, LLE then regenerate a set of lower dimensional vectorsY in Rd

by minimizing the embedding cost function,

ε
e(W) = ∑

i
|−→Yi −∑

j
Wi j

−→
Yj |2 (22)

subject to the constraint (YiYT
i ) = 1,The main difference between this embedded cost functionεe(W)

and the reconstruction cost functionε r(W) is that we are now keepingWi j constant, whilst varying the
low dimensional vectors inY. The real advantage of LLE is the ability to solve this minimization as an
eigenvalue problem by finding the eigenvectors of the matrixM, where

M = (I −W)(I −W)T (23)

The lower dimensional representationY can then be obtained by taking the eigenvectors ofM with the
smallest eigenvaluesλ as the rows ofY. A special common eigenvector ofM with the eigenvalueλ M of
0 is that of a vector of a set of ones (or minus ones). This special vector is called the uniform vectoreand

9Note that since we are performing normal linear PCA in feature space and PCA is usually performed on centralized data, the feature space data will
therefore need to be centralized as well. In input space this is easily achieved by offsetting each input point by the mean of the data. This centralizing problem
is a lot more difficult in Feature space, since an explicit feature space mappingΦ is not usually defined. In the appendix section, [Scholkopf and Smola 2002]
showed that̃K i j in the Gram matrix generated from centralized mapped feature space data is equal to(K −1MK −K1M +1MK1M)i j , where(1M)i j := 1/M
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can easily be shown that it minimizes the embedded cost functionεe(W) by substitutinge into equation
22

∑
i
|−→ei −∑

j
Wi j

−→ej |2 = ∑
i
|−→ei −∑

j
Wi j |2 = ∑

i
|−→ei −1|2 = 0, f or e∈ RN : e= [1,1, ...,1] (24)

Due to the fact thate is always a solution in LLE, it is usually ignored, and the embeddingY is generated
from the eigenvectors with the lowest eigenvalues thereafter. In summary, in order to perform LLE man-
ifold learning, two variables need to be preselected, the numbers of neighboursk to use in LLE and the
number of output eigenvectorsd that will be used to represent the embedded output data. For each input
point Xi in RD, LLE then selects the nearestk neighbours as determined by the euclidian distance inRD

and construct the weight matrixW andM. The low dimensional embeddingY in Rd is then obtained by
finding the firstd eigenvectors ofM with the lowest eigenvaluesλ M not equal to zero10.

It is also possible to determine the LLE Kernel MatrixK lle of the training set (as discussed previously
in section 5.2 - Kernel PCA). Given the matrixM from LLE, [Ham et al. 2004] showed that the positive
definite and centered Gram matrixK lle can be defined by taking the pseudo inverse of the matrixM,

K lle := M† (25)

From this relationship, it is then possible to show that the Kernel PCA projections onto the kernel principal
componentsVn via the Gram matrixK lle is exactly the same as the LLE embedding, scaled by the square
root of the corresponding eigenvalues ofK lle. The squared root scaling is necessary because the embed-
ding generated from LLE will be the normalized eigenvectorsα, all scaled to have the squared distance
of N. In order to ensure that the total variances of the data set are left unchanged after projection onto the
kernel principal components, all normalized projected points (from LLE) need to be scaled by the square
root of the variance11. The projection via kernel PCA is achieved by ensuring that the kernel principal
componentsVn of the mapped pointsΦ(Xi), are all normalized, leading to

(Vn ·Vn) =
M

∑
i, j=1

α
n
i α

n
j (Φ(Xi) ·Φ(Xj)) =

M

∑
i, j=1

α
n
i α

n
j K

lle
i j = α

n ·K lle
α

n = λ
lle
n (αn ·αn) = 1 (26)

Therefore, the LLE embedding (also known as the eigenvector of the Gram Matrix)αn multiplied by√
λ lle

n gives projection of the input point onto the kernel principal componentVn.

6 Application of Non-Linear Manifold Learning to Motion Capture

This section shows how to integrate the ideas and techniques discussed in the previous three sections
(Motion Capture File Format , Accurate Mesh GenerationandDimensionality Reduction and Man-
ifold Learning Techniques) to capture human motions using images from multiple cameras. A brief
overview of the markerless motion capturing system is first presented in section 6.1, before moving on to
how to learn a non-linear manifold using Kernel PCA via LLE. We then end off by presenting a technique
that can be used to project new input images (not originally in the training set) onto the manifold.

10In this case the eigenvectore with the eigenvalue of zero is ignored in the embedding. In some literature this vectore may be included in the output
embedding, resulting in a lower dimensional manifold inRd+1. This, however, has no effect on the euclidian distances between all points on the manifold
because it has a constant value of 1 in the extra dimension for all points in the set.

11The variance of the projected data set with the Gram matrixK lle is stored in the corresponding eigenvaluesλ lle of the Gram matrix
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6.1 Motion Capture System Overview

In order for our camera based motion capture system to successfully capture human motion, the system
must basically convert multiple images, to a pose vector inRP, whereP represents the dimensions of the
combined skeletal joint rotations. We plan to investigate the possibility of treating the problem of multiple
camera motion capture as an semi-supervised learning problem. The problem can therefore be restated
as follows: Given a high dimensional vectorI in RP of rearranged pixels of concatenated images from
multiple views, the system must map the vector to a lower dimensional spaceY in Rd, where it will be
possible to determine the pose of the person for the set of input images.

We plan to perform the non-linear manifold projection by using Kernel PCA via LLE as explained earlier
in the previous section. In order for LLE to work properly, a set of well sampled vectorsI tr in RP and
it’s corresponding lower dimensional pointsYtr in Rd are needed for training. The training set will be
generated synthetically with an accurate skinned mesh of the person by computationally running through
all the possible euler joint angleE representation of the skeleton inRE. Virtual cameras views with the
same intrinsic and extrinsic parameters as themcameras to be used in the motion capture are then created
in virtual space. For each euler pose vector inRE, it is then possible to find its corresponding set of images
in multiple cameras by taking snapshot in the virtual cameras. Initially we plan to test the concept with
segmented training data generated from a gray skinned mesh, but in the future, the method will be extended
to colour images where the textured accurate skinned mesh will be needed to generated the training set.

For each euler pose vectorEi in the training set, a set ofm synthetic camera images of the actor can be
captured. The training system thencrops each image to fully enclose the outline of the person, before
resizing the cropped image to a predefined training dimension. The cropping of the image data before
training is a very important step as it creates the robustness of this technique of motion capture, by al-
lowing the person to move around anywhere, as long as the person is fully enclosed within the view of
the cameras12. From the cropped images, each columns are rearranged to form a single column vector
and concatenated to produce a high dimensional vector inRP. The concatenation of images from multiple
synthetic cameras can be used to eliminate the problem of occlusions and to produce distinct set of images
for each pose.

From the training setI tr , a lower dimensional manifoldYtr can be obtained via LLE. However due to
the extremely high dimension ofRP, it would be inefficient to perform LLE on the rearranged pixel data.
Linear principal component analysis is first performed onI tr , to obtain the vectorXtr . As the purpose of
applying PCA is not to compress the data but to re-represent all the data in lower dimensions, the firstD
principal components with eigenvaluesλ pca > 0 are retained. Each training vector in the setI tr is then
projected onto the linear principal components to generate the LLE training setXtr in RD. LLE is then
performed on this training setXtr to reduce the input vector to it’s manifold representationYtr in Rd. Each
manifold representationYi in Ytr will also have a matching eulerEi , and it is the significant of this link that
the system will take advantage of in order to determine the euler pose of a new point for motion capture.

Given a new set of images not in the training set but from the same set of cameras, the images are first
cropped and rearranged to getI in RP. This vector is then centered and projected onto the firstD linear
principal components of the training set, to get the vectorX in RD. The vectorX is then projected onto
the kernel principal components via LLE to get the manifold vectorY. Once on the manifold, the nearest
km neighbours on the manifold defined byYtr are found, andY is re-expressed in dual format as a linear
combination of these neighbours. The output pose from the motion capture system can then be generated

12One may argue at this stage that this cropping process eliminates the ability to determine the world position of the entire person. This may initially be the
case, but once the pose of the person has been found, the tracking system can make use of this information with the centre of the cropped image to find the
world position of the person
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Figure 12: Diagram to show overview of the Motion Caputring System.

as a linear combination of neighbours’ corresponding vector in the setEtr . In order for this dual format
regeneration to work, theYi on the manifold andEi of the pose vectors must have a high percentage of
common neighbours, that is the manifoldYtr must be aligned to the set of vectorsEtr . In the following
section, we cover an LLE technique which can be used to align these manifold as well as how to use the
same technique to project new pointX not in the training set onto the manifold.

6.2 LLE Projection to Common Manifold

The problem of manifold alignment can be reformulated as follows: Given 2 sets of corresponding high
dimensional vectorsXtr andEtr , how do we project both data set to a common manifold such that each
point Xi andEi share the most numbers of the same neighbours. Provided that this common manifold can
be found, given a new pointX not in the data set, we can then project it onto the common manifold, find the
closest neighbours on this manifold in the training set and generate the output pose using linear distances
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between neighbours in pose space. A mathematical formulation of the combined matrixZ composing of
bothXtr andEtr and the new inputX is express below,

Z =
[

Xtr X
Etr ?

]
(27)

The problem of determining a human pose can then be restated as a learning problem of determining the
unknown in the matrixZ. It turns out that this problem can easily be solved via LLE as shown by [Ham
et al. 2003]. Provided that there areN training points, we can use LLE independently on the set of vectors
in Xtr appended with the new input pointX, and another on the euler vectorsEtr ,

YX = LLE([Xtr X]) (28)

YE = LLE([Etr ]) (29)

From this we will be able to also obtain the weight matrix for both set, as well as theM matrix13, MX

(dimension ofN + 1 by N + 1) andME (dimension ofN by N). Letting MX
nn represent the first N rows

and N columns of matrixMX andMX
ss the columns and rows in matrix afterN, the projection of the two

manifoldYX andYE to a common manifoldY can be achieved by combining theM matrices as follows,

MY =
[

MX
nn+ME

nn MX
ns

MX
sn MX

ss

]
(30)

The LLE mappingY of the points[XtrX] to a common manifold can be found by taking the eigenvalues
of MY. This will produce a low dimensional manifold where the corresponding training points are con-
strained to be equivalent on the common manifold. The kernel PCA projections onto the kernel principal
components can be found by finding the pseudo inverseK lle of MY and scaling the LLE mappingY by
the square root of its corresponding eigenvalues ofK lle. Furthermore, the closestk neighbours to the new
input pointX can be found by finding the nearestk neighbours to the mapped point on the manifold. The
neighbours are then used to generate the output in pose space. This is possible as we have mapped the
pixel data to a lower dimensional space which is constrained to be close to the pose space manifold.

An immediate argument against LLE may be that we are generating the output pose from a linear com-
bination of neighbours on the manifold generated by LLE. This combined with the fact that LLE is a
neighbouring distance preserving dimensional reduction technique would suggest that LLE is just an extra
pointless step, since the same nearestk neighbours inXtr would map to the exactly the samek neighbours
in Y. This would then suggest that the LLE manifold learning technique could be completely removed
from the system, and the system could regenerate the output pose from a linear combination of its neigh-
bours in linear PCA space. An argument for LLE is that even though it imposes the constraint that each
point on the manifoldY can be regenerated as a linear combination of itsk neighbours onX, it does not
necessary mean that the same nearestk neighbours would be found onY as found onX. This is because
for any point in the set, LLE can actually project points that were initially not within its set of nearestk
neighbours onX to be within its nearestk neighbours onY. This concept will be clearly illustrated in the
results in the following section.

Another main advantage of LLE can be shown by taking a closer look at the generation of the combined
vectorZ. In equation 27, an inputX with unknown mapping is appended toXtr . A similar extension can

13The matrix M is obtained as follows (as discussed in 5.3),M = (I −W)(I −W)T
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be applied forEtr by adding more synthetic pose vectorsEsyn which do not have known correspondence
in image space. All of these new synthetic points will then be mapped to the common manifold, resulting
in more neighbours for the input point to chose from when mapped onto the same manifold. This further
supports the argument that a neighbour in linear PCA space does not necessary have to be a neighbour
after performing LLE. Since we know how to accurately generate these synthetic pose vectors, we can
generate as many as we want. There is obviously an optimal ratio between poses with correspondence and
poses without that will give the best animation. The new common manifold will now be based on the new
definition of the pose manifoldYE,

YE = LLE([Etr Esyn]) (31)

From this, the new matrixMY is generated as follows,

MY =

 MX
nn+ME

nn ME
ns MX

ns
ME

sn ME
ss 0

MX
sn 0 MX

ss

 (32)

From this matrix, we perform the same step and obtain the LLE embedding from the eigenvalues of the
matrix MY. Another advantage of applying this method is that LLE need to only be performed once on
the set [Etr Esyn], because once we have the matrixME, it does not need to be recalculated again. In
summary, given a new set of input images, it is cropped, resized and rearranged to get the vectorI . This
vector is then projected using linear PCA toX. The system then preforms LLE on the set [Xtr X] to getYX

and more importantlyMX. The matrixMX is then combined withME generated at system initialization
to obtainMY, representing the common manifold. The first square roots of the firstn eigenvalues of the
pseudo inverse ofMY is calculated and then used to rescaled the LLE embedding. The input point is then
identified on the manifold14, and the nearestk neighbours found. The output pose is then generated as a
linear combination of these neighbours in pose spaceE.

7 Motion Capture Tests and Results

In this section, we apply the methods described in the previous section to synthetic binary images. In
order to test the accuracy of the system, the output pose calculated by the system is compared with the
pose that was used to initially generate the images in virtual space. To initially test the concept, only the
left shoulder joint of a generic mesh is used to generate the training images (Figure 13 - left images). Only
part of the images within the white borders are passed to the system for processing, where the images
within the borders are segmented and cropped to fully enclosed the mesh, and then resized to an image
size of 60× 60 pixels. For testing a motion capture data is selected and the euler joint angles for the left
shoulder joint filtered out and applied to the accurate skinned RBF mesh (Figure 13 - right images). The
same process of bordering, segmentation, cropping and resizing are applied to the test images to obtain
the test vectorIi for framei.

The input vector is then mapped to the common manifold (Figure 21 at the end of the report) using the
synthetic data from the generic mesh. The output pose is then generated as a linear combination of thek
neighbours of the training data on the manifold. In order to present the result visually for this case where
there is just one bone rotating, we substituted the euler representationE with the axis of the armA which

14If exactly the same arrangement as the one in equation 32 is used, then the input point will correspond to the last point in the embedding
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Figure 13: Example of the training images (left) and the test images (right).

is generated by applying the euler rotation to the unit vector[1,0,0]15. The goal of the system for this
experiment is to then find a unit vectorA

out
i from the input camera images which is closest to the vector

A
in
i , which is the unit vector[1,0,0], transformed by the euler rotationEi . This output vectorA

out
is then

compared with the input poseA
in

(that was used to generate the images) using the following error function,

ei = acos(Aout
i ·Ain

i ) (33)

Figure 14: Images of the manifold originally produced by LLE before alignment (left) and after alignment using uniform unit
axis correspondence (right).

From the plot images in figure 14, it is clear that mapping to an aligned common manifold results in a
much smoother manifold for selecting neighbours.

15The vector [1,0,0] is a vector that runs from the centre of the parent node to it’s child in each bone of the skeleton. In the case of the left shoulder bone,
this vector will always run from the shoulder joint to the elbow.
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Figure 15: Bar graphs of the eigenvalues of the Kernel Matrix before alignment and after alignment. The ratio of the eigenvalues
λ n to the sum of all the eigenvalues are proportional to the energy stored on the kernel principal componentVn. The numbers of
dominant eigenvalues therefore reveal the dimensionality of the manifold, which is correct for the case of the aligned manifold,
considering that a shoulder joint has 3 degree of freedom.

It is also possible to determine the dimensionality of the data by looking at the eigenvalues of the aligned
manifold, which has three main eigenvalues, hence re-enforcing that most of the variance in the data set
is stored in the 3 main kernel principal components. This is not the case with the original LLE manifold,
where the eigenvalues show that most of the information is stored in the first principal components.

An interesting observation was that the system was getting similar errorsei when completely ignoring
LLE and interpolation usingXtr in the first 600 principal components. This result can easily be explained
by examining the eigenvalues plot of the aligned LLE manifold (Figure 15 - right) and the eigenvalues of
the linear principal components. In the calculation of the neighbours in both the PCA and the aligned LLE
space, the euclidian distances were used, and since both space have most of there variances stored in the
first three components as shown in the images, the system would be getting similar results in both spaces,
even if it were to calculate euclidian distances using all the components in both space.

It is expected that as the system is extended to include more joints, the variances of the data will spread out
over more differentlinear principal components, hence reducing the ability to interpolate using neighbours
in the linear PCA space. However with LLE, the system will be able to reduce the dimension to close to
the dimension of the joint data, hence preventing it from breaking down as with the case of linear PCA.

There are also 3 main variables that needs to be selected when using LLE for manifold learning, namely
the number of neighboursklle used for LLE manifold construction, the ratio16 R of the number of points
in correspondence and euler pose dataEsyn without any correspondence, and finally the number of neigh-
bourskgen that will be used to make up the output pose vectorA

out
i . From the error plot (figure 17), we can

show that it is possible to get similar errors for using neighbours generation in linear PCA space and LLE
space. Furthermore, from the rightmost surface plot of LLE error minus PCA error (figure 17), we show
that LLE performs better (negative region of the surface plot) usingkgen of between 3 to 6 neighbours
for regeneration andR between 0.3 to 0.5, further re-enforcing the ability to use less numbers of training

16Ratio of points in correspondence to total points includingEsyn. A ratio R = 1 implies that all training points in the set have correspondences.
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Figure 16: Scatter plot to show the distribution of the training data projected onto the first three linear principal components,
and their corresponding eigenvalues.

Figure 17: Average error plots of 52 test pose using different values for the parametersRandkgen, with klle set to 15 neighbours.

points for regenerating motion on the aligned LLE manifold. We plan to further investigate and learn the
optimal values of these parameters in future experiments with more skeletal joints.

Another way to visually see how well a manifold is for reconstruction of a new point is by displaying the
set of the closest neighbours in pose space. In this case where only the left shoulder is rotated, the system
can instead display the set of neighbours closest to the input point on a 3D sphere, as we are looking at
single joint rotation. Suppose a trained system is given a poseE, we can map the vector [1,0,0] to axisA
usingE, giving a vector which lies on a unit sphere. Similarly we can useEtrn to map the unit vector to
a set of training points on the sphere. The same poseE could the be applied to the skinned mesh and the
rearranged cropped vectorI generated, before being mapped via PCA toX and then viaLLE to the aligned
manifoldY. The ideal manifold would then be one where the nearest neighbours toY on its manifold are
the same nearest neighbours toA on the sphere (See figure 18).

Another point to take into consideration is that the only difference between the LLE manifold and kernel
principal components projections is the scale factor of the square root of the eigenvalues. For a kernel
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Figure 18: Spherical plots of the first 150 neighbours to a test point in the training set using euclidian distances in PCA and
LLE. The stars shows the actual position of the elbow joint. Ideally we want to find a manifold where given a new input point,
we can use it to find nearest neighbours on the manifold, which would correspond to nearest neighbours in the output pose
space. The red circles in the images mark the nearest 150 neighbours found by using euclidian distances in the PCA and LLE
space respectively. Note how the neighbors found in LLE space map to closer neighbours in output axis space.

matrix where the set of biggest eigenvalues are almost equal, the use of euclidian distances search will
give the same neighbours for both LLE and KPCA calculations, hence eliminating the step of findingλ lle

and scaling by its square root.

8 Discussions and Future Directions

This report has so far presented ideas for a complete camera based system for human motion capture. The
real advantage of the techniques presented are it’s flexibility and lack of constraints in terms of movement
of cameras and system initialization. Taking into account that it is possible to have constant preset intrinsic
camera calibrations, all that is needed every time the cameras are moved around is to update the extrinsic
parameters and generate training data with the mesh and re-capture the images. It is also extremely easy to
increase the capturing accuracy by adding more cameras to the motion capture system, the only changes
that will need to be made is that the system would need to be trained with the extra images and this can be
implemented automatically without user intervention. One extremely exciting idea that will need further
investigation is the ability for the system to capture human motion using training data from a generic mesh
(Figure 21), instead of using an accurate mesh obtained from the laser scanner (results shown in figure
19). This has the potential of an extremely portable and inexpensive motion capturing system, especially
in areas of computer games and human computer interaction. Imagine being able to buy a computer game,
which comes with 2-3 cameras, and all that needs to be fed into the system for training are the extrinsic
parameters for the camera. Provided that good quality segmentation can be achieved, then the images
can be mapped to the manifold and the poses found. The quality of the motion captured generated will
obviously not be as accurate as the ones found by a marker based system, but the system makes up for it
in terms of lower cost, portability and flexibility.

Future directions for the project includes extending the training and test motions to include all the joints
on upper part of the body, and testing with real camera images captured from firewire cameras. The
possibilities for a flexible human interface system using low cost cameras are endless. For example the
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Figure 19: Axis plot (blue dots) of the transformed unit vector [1,0,0] of the arm motions for the original motion capture data
and the axis captured using LLE manifold projection.

data can be used to drive the mouse or control movements in a computer game, hence give more realism to
the experience. Currently the system uses segmented data for training and testing, another improvement
that we plan to investigate is to extend the system to work with colour image data. In this case, instead of
simply performing segmentation, cropping and resizing in that order, the system will add in an extra step
of filling in the foreground pixels with it’s original colours captured in the images. This step will follow
immediately from the segmentation step, before moving on to cropping and resizing. The system with
then be trained with atextured skinned mesh rather than using a gray mesh. This should further increase
the accuracy of the system, without adding further processing time, as the input dimensions would remain
exactly the same as the case of using binary segmented images.

Another possible improvement for the system is its speed. Currently when a new image is received, the
system needs to solve for the eigenvectors of anN + 1 by N + 1 matrix at each frame forN training
points. Instead of recalculating the eigenvalues every frame, we plan to investigate techniques for out of
sample extension of the kernel matrix like [Bengio et al. 2004], where new points can be projected onto
the manifold and the Kernel matrix extended without fully recalculating for new eigenvectors. Another
potential limitation of the system is that temporal information is not used at all in the capturing process. A
closer look at resultant axis in figure 19 will show that the output axis will not produce a smooth animation
when the poses are concatenated to each other in virtual space. A possible way to fix this is to apply
Kalman filters to the joint angles in axis space to introduce temporal constraints. Another interesting area
to investigate is the performance oflinear kalman filtering in feature space, as the main point of kernel
principal components analysis is to perform linear PCA on mapped points in close to linear feature space.
The same argument should therefore be equally valid for linear Kalman predictions and corrections on
data projected onto the kernel principal components in linear feature space.
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8.1 Time Line of Thesis

The time line on the following page summarizes the future directions of the project. I plan to spend the
next 3 months to extend the motion capture system to enable it to capture the upper part of the human
body. The system can then be used to capture real human motion in our Digital Perception Lab. In the
beginning of 2006, I plan to investigate the possibility of applying Kalman Filtering to the output motion
capture data in order the smooth out the stored animation.

From February 2006, I will focus on implementing a real time motion capture system. For the latter part of
2006, I plan to investigate the possibility of using a generic mesh to generate synthetic training data, before
integrating everything together to make a complete motion capture system. The final thesis write-up have
been planned for 2007. At the end of the various sections (as shown in the diagram), I will be writing
up technical reports and will also be planning to submit papers based on the same topics to international
conferences in the Computer Vision and Graphics Community.

Figure 20: Time Line for future directions.
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DAVIS , J., AGRAWALA , M., CHUANG, E., POPOVIĆ;, Z., AND SALESIN, D. 2003. A sketching interface
for articulated figure animation. InSCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer animation, Eurographics Association, 320–328.

FRALEY, C., AND RAFTERY, A. E. How many clusters? which clustering methods? answers via model-
based cluster analysis. Technical Report 329, Department of Statistics, University of Washington, Box
354322. Funded by the office of Naval Research.

HAM , J. H., LEE, D. D., AND SAUL , L. K. 2003. Learning high dimensional correspondences from low
dimensional manifolds.Proceedings of the ICML 2003 Workshop on The Continuum from Labeled to
Unlabeled Data in Machine Learning and Data Mining, 34–41.

HAM , J., LEE, D. D., MIKA , S., AND SCHOLKOPF, B. 2004. A kernel view of the dimensionality
reduction of manifolds.Proceeedings of the 21st International Conference on Machine Learning, Banff,
Canada.

HILTON , A., BERESFORD, D., GENTILS, T., SMITH , R., AND SUN, W. 1999. Virtual people: Capturing
human models to populate virtual worlds.In IEEE International Conference on Computer Animation,,
174–185.

HILTON , A., BERESFORD, D., GENTILS, T., SMITH , R., SUN, W., AND ILLINGWORTH, J. 2000.
Whole-body modelling of people from multi-view images to populate virtual worlds.Visual Computer:
International Journal of Computer Graphics 16(7), 411–436.

JOLLIFFE, I. T. 1986.Principal Component Analysis. New York: Springer Verlag.

KEOGH, E., PALPANAS, T., ZORDAN, V. B., GUNOPULOS, D., AND CARDLE, M. Indexing large
human-motion databases.Proceeding of the 30th VLDB Conference, Toronto, Canada, 2004.

KOVAR, L., GLEICHER, M., AND PIGHIN , F. 2002. Motion graphs. InSIGGRAPH ’02: Proceedings of
the 29th annual conference on Computer graphics and interactive techniques, ACM Press, 473–482.

MECSE-30-2005: "Multiple Cameras Human Motion Capture using Non-linear Manifold ...", T. Tangkuampien



LEE, J., CHAI , J., REITSMA, P. S. A., HODGINS, J. K.,AND POLLARD , N. S. 2002. Interactive control
of avatars animated with human motion data. InSIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, ACM Press, 491–500.

L I , Y., WANG, T., AND SHUM , H.-Y. 2002. Motion texture: a two-level statistical model for character
motion synthesis. InSIGGRAPH ’02: Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, ACM Press, 465–472.

LUNA , F. 2004. Skinned mesh character animation with direct3d 9.0c. Tech. rep., moon-labs, www.moon-
labs.com, September 2004.

M IKA , S., SCHOLKOPF, B., SMOLA , A., MULLER, K.-R., SCHOLZ, M., AND RATSCH, G. Kernel pca
and de-noising in feature space.GMD FIRST, Rudower Chaussee5, 12489 Berlin, Germany.
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Figure 21: Plots of the LLE aligned manifold and its corresponding images for some of the points.
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