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Abstract 

To achieve efficient design of high speed modulators and switches, especially micro ring resonators , the 

fabrication of rib-waveguides and diffused waveguide with suitable mode size is essential to minimise 

total insertion loss  (for ring resonator) and also to maximise the overlap integral between the guided 

optical field and the applied modulating field.  

In this paper, we chose FDM to study the quasi-TE and quasi-TM polarised waveguide modes due to its 

simplicity and plausible accuracy. We have employed the semi-vectorial analysis which automatically 

takes full account of the discontinuities in the normal electric field components across any arbitrary 

distribution of internal dielectric interfaces. The eigenmodes of the Helmholz equation is solved by the 

application of shifted inverse power iteration method. This method warrants both the mode size and its 

relevant propagation constant, which are both important parameters to the design of optical waveguide. 

The grid size is non-uniform to maximise the accuracy of the optical guided modes and their propagation 

constants. Diffused waveguides and rib waveguides are designed with different parameters to 

demonstrate the effectiveness of the method and leading to an optimum design of waveguides of optical 

modulation and micro-ring resonators. 
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1 Introduction 

Ring resonators (RR) have been attracting to the field of photonic signal processing as a versatile 

photonic building block with many processing and manipulating of photonic wave applications. Two 

basic onfigurations of ring resonator are shown in Fig. 1(a) and (b), showing a single ring coupled to 

one and two bus waveguides, respectively. The fundamental design parameters are the ring cavity 

length (Lc) and the coupling coefficient between the ring and the bus. Two main classes of applications 

of these resonators are high order filters using arrays of RR1. There are optical waveguides coupled 

into and out of a micro ring waveguides acting as an optical resonator. Within this resonator ring the 

guiding of lightwaves is so critical to minimize the propagation loss, thus the design of optical 

waveguides is very important. For optical waveguiding there are typically two types the diffused 

guides and the rib-guides.  The design of these waveguides requires a formulation that would lead to 

optimum uses of computing resources and accuracy.  

(a) (b) 

Optical waveguides 

Optical 
waveguide 
microrings 

 

Figure 1Generic structures of microring resonators 

In general, the optical mode of the waveguide is acquired by solving the Helmholtz equation. 

However, only a few simple waveguide structures can be solved analytically. Therefore, extensive 

attempts have been made to obtain numerical solutions for a two-dimensional cross section of optical 

waveguides [1-17]. One method is the approximate modelling of two-dimensional slab waveguide 

                                                 

1 Brent Little, Little Optics Inc., USA 2006. 
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solution successively in both directions, following either the method of Marcatilli[51] or the effective-

index method (EIM)[34]. However, these methods are not applicable to arbitrarily shaped optical 

waveguides, neither do they handle waveguide mode near the cutoff region efficiently. A significant 

number of numerical methods have been proposed to obtain rigorous solutions to the wave equation 

with pertinent boundary conditions. The popular techniques by far are the finite difference method 

(FDM)[4], finite element method (FEM)[16] or beam propagating method(BPM)[8]. The application of 

different techniques based on the above methods such as semivectorial E-field FDM[6], semivectorial 

H-field FDM[47], Rayleigh quotient solution[46], have been studied and reported. These method are 

applicable to arbitrarily shaped optical waveguides. In FEM and FDM, partial differential equations are 

discretized and then transformed to matrix equations. The calculations of mode indices and optical 

field distributions are then equivalent to obtaining eigenvalues and eigenfuctions of the coefficient 

matrices. 

In addition to achieve efficient design of high speed modulators and switches, especially micro ring 

resonators, the fabrication of rib-waveguides and Ti:NbO3 waveguide with suitable mode size is essential 

to minimise waveguide insertion loss and also to maximise the overlap integral between the guided 

optical field and the applied modulating field. Furthermore the bending or radius of curvature is so 

important for ring resonator to keep the ring size as small as possible. Extensive studies have been 

devoted in recent decades on fabricating Ti:diffused LiNbO3 waveguides which couple efficiently to 

single-mode fibers[29, 48-51]. A major milestone was achieved when a total fiber-waveguide-fiber insertion 

loss of 1 dB was achieved for z-cut LiNbO3 at 1.3 μm[50] . Such low loss was achieved by choosing 

fabrication parameters to yield a relatively deep, clean diffusion, which simultaneously minimised the 

fiber waveguide mode mismatch loss and the propagation loss. Suchoski and Ramaswamy[35] has reported 

on the optimisation of fabrication parameters to obtain Ti:LiNbO3 single mode waveguides which exhibit 

both minimum mode size and low propagation loss at 1.3 μm. All these design requirements have led to 

the significance of the analysis of polarised modes in channel waveguides. 

In this paper, we chose FDM to study the quasi-TE and quasi-TM polarised waveguide modes due to its 

simplicity and plausible accuracy. We have employed the semivectorial analysis[6, 17, 47] which 

automatically takes full account of the discontinuities in the normal electric field components across any 
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arbitrary distribution of internal dielectric interfaces. The semivectorial FDM, despite its simplicity and 

being free from troublesome spurious solutions, has two major disadvantages of being computational 

intensive and requiring large amount of memory. Hence, it is necessary to introduce the discretisation 

scheme on the non uniform mesh, in which mesh intervals can be changed arbitrarily depending on 

waveguide structures. For this reason, we have modelled the waveguide mode with finite difference 

method which employs a non uniform discretization scheme [3,17]. Such a discretization scheme enables us 

to increase the size of the problem space so that the field component at the boundary can be assumed to 

have vanished. The grid spacing increases monotonically with increasing distance from the guiding 

region. The grid lines can also be aligned with the boundaries of the step index changes in conventional 

structures such as rib, ridge and strip-loaded waveguides as well as quantum well structures. Furthermore, 

by judiciously placing the grid lines and corresponding cell structure efficiently, we can reduce the 

required matrix size and hence redundant computer calculations, while preserving the accuracy of the 

calculations. The non-uniform discretisation scheme also enables us to handle waveguide mode near the 

cut off region with a relative simple boundary condition. The eigenmodes of the Helmholz equation is 

solved by the application of shifted inverse power iteration method. This method warrants both the mode 

size and its relevant propagation constant, which are both important parameters to the design of optical 

waveguide. 

In the Section 2, we outline the numerical formulation of the non-uniform finite difference scheme as 

described above. Both quasi-T.E and quasi-T.M polarised mode are addressed. We also assess the 

accuracy of the numerical result of this scheme by computing the effective refractive index of a few rib 

and slab dielectric waveguides and compare the results with published results. The effect of grid spacing 

is also investigated. We will also present the effectiveness of the variable grid spacing in dealing with 

waveguide mode near the cut off region.  

Section 3 describes the modelling of Ti:LiNbO3 channel waveguide. The effects of various waveguide 

fabrication parameters such as the diffusion time, diffusion temperature, thickness and width of the 

titanium strips are studied. The accuracy of the numerical model is assessed by comparing our 

simulations with experimental and simulation results that are reported in several literatures. 
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Apart from being able to access the accuracy of the final product of our work, which is the SVMM 

(Semi-Vectorial Mode Modelling) computer program, we will also present an overview of its application 

in modelling Ti:LiNbO3 channel waveguide for optical devices such as modulators and switches. 

In essence, this part of this paper work will present an understanding of the numerical formulation 

involved in the modelling of optical modes in channel waveguides. The robustness of the numerical 

formulation will enable us to model the optical mode of a channel waveguide with an arbitrary index 

profile easily and accurately. With recent advancement in computer technology, our work has much to 

offer in the analysis and design of optical channel waveguides. 

2 Non-Uniform Grid Semi-vectorial Polarised Finite Difference Method For Optical Waveguides 

With Arbitrary Index Profile 

2.1 The Propagation Euqation 

For harmonic wave propagation in the z direction along a rib or channel waveguide, we consider the 

fields 

E( , , ) ( , ) exp ( ),x y z E E E j t zx y z= −ω β  (1) 

H ( , , ) ( , ) exp ( ),x y z H H H j t zx y z= −ω β  (2) 

D E= ε(x,y) ,  B H= μ  (3) 

where the dielectric constant ε ( , )x y is piecewise constant and the magnetic permeability μ  is 

completely constant throughout the solution domain. The components of the electric and magnetic fields 

in Eq (1) are functions of x and y only. Then, applying the Maxwell equations in the magnetic and charge 

free media and take appropriate algebra we obtain the wave equation:  

∇ × ∇ × = ∇ ∇ ⋅ − ∇ = =( ) ( )E E E E 22 2 2ω εμ k n E   (4) 
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in which nd  with k = =ω ε μ π λ( ) //
0 0

1 2 2  a ε ε= 0
2n x y( , ) λ  being the free space 

wavelength. With the divergence of ∇ ⋅ =D 0  and ∇ = ∇log /e ε ε ε , we get 

∇ ⋅ = − ⋅∇ = − ⋅∇E E Elog /e n nε 2   (5) 

. This may be substituted into (4) to yield the wave equation 

∇ + + ∇ ⋅∇ =2 2 2 0E E Ek n n( / )   (6) 

As n(x, y) is piecewise constant,  and it should be noted that  is undefined at 

internal dielectric interfaces where n(x, y) is discontinuous. With the assumption that the fields are 

polarised either perpendicular (quasi-TM) to or parallel (quasi-TE) to the crystal surface and that the 

major field components of the modes are perpendicular to the direction of the propagation, Eq (7) can be 

reduced to 

∇ =n n2 0/ ∇n n2 /

( )∇ + =t k n2 2 2 2E Eβ    (7) 

in which ∇ = +T x y
2

2

2

2

2

∂
∂

∂
∂

 , the transverse Laplacian and β  is the propagation constant. This is 

essentially the Helmholz wave equation. 

2.2 Formulation of Non Uniform Grid Difference Equation 

y

x

Ei, j

(i)

(j)

    

(j-1)

(j)

(j+1)

(i)(i-1) (i+1)

ni, j ni+1, j

ni, j+1

hj

hj+1

hi hi+1

a
d b

e
c
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Figure 2: Non uniform discretized grid for FDM scheme (a) and (b) A magnified portion of grid lattice and cell 

structure of point i, j. 

Figure 2(a)  shows the grid lines used in the finite difference method formulation. The grid lines are 

chosen in such a way that denser grids are allocated around the guiding region while coarser grids are 

assigned to regions further away from the waveguide. Boundaries of abrupt index changes are straddled 

by the grid lines wherever necessary. Figure 2(b) shows the magnified view of a portion of the grid for a 

more detailed illustration. Each cell point is located in the center of each rectangular cell. hi, and hj are the 

horizontal and vertical grid sizes. The refractive index within each cell is assumed to be uniform. ni, j and 

ni+1, j represent the values of the refractive index of each small cell as an approximation,  which are taken 

from the continuous refractive index profile n(x, y). Non uniform spacing of the grid lines provides some 

flexibility in setting up the non uniform grid FDM. The non uniform discretization with increasing 

spacing away from the guiding region permits sufficient extension of the boundary. This enables us to 

assume a Dirichlet boundary condition (metal box) where all fields have vanished.  

(I) Quasi-TE Mode 

For quasi TE polarised mode, Ey is assumed to be zero. Ex is continuous across the horizontal interfaces 

but discontinuous across vertical interfaces. Therefore, the quasi-TE modes are the eigensolutions of the 

equation 

∇ + =t x x xE k n E E2 2 2 2β   (8) 

The discontinuity across the vertical interface will need to be taken into account when formulating the 

difference equation.  
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Ei, j

a bd

EE

EW

Ei, j
v

Ei+1, j
v

Ei+1, j

E

x

hi hi+1

EW

N

S

 

Figure 3: Quasi-TE electric field discontinuity at the boundary between cells (i, j) and cell (i+1,j). Solid lines are the 

actual field profiles along x axis while  and  are virtual fields. Ei j
v
, Ei j

v
+1,

Figure 3 illustrates the quasi-TE field discontinuity at the boundary between cells (i, j) and (i+1, j). 

Consider the points a, d and b, with d being at the boundary of the dielectric interface. The horizontal axis 

is the x-axis while the vertical axis is the electric field amplitude of the respective position of the cell. 

Assume that the x-axis is pointing towards the east. So, EE and EW are the field amplitudes just to the east 

and the west of the boundary between the cells (i, j) and cell (i+1, j).  is the virtual field in cell (i, j) 

which is the extension of the actual field E

Ei j
v
,

i+1, j. In other words,  is the field seen by the cell (i+1, j). 

Similarly,  is the extension of E

Ei j
v
,

Ei
v
+1, j

,

i, j  . nE  and nW  are the refractive indices just to the east and the west 

of the boundary. Since we consider a slowly varying index distribution, we assume that nE  and nW  are 

approximately equal to ni, j  and ni+1, j  respectively. The boundary conditions between the cells (i, j) and 

(i+1, j) are given as follows: 

n E n EE E W W
2 2= ,   (9) ⇒ n E n Ei j E i j W,

2
1

2= +

∂
∂

∂
∂x

E
x

E pE W= = +   (10) 

where p+ represents the field gradient at the boundary between the cells. We can then use the approximate 

relationship between , , , , and obtain the following equations for  and : Ei j, Ei j+1, Ei j
v
, Ei j

v
+1, EE EW
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E E h pi j E i+ +
+≈ + ⋅1 1 2, ( / ) E E h pi j

v
E i, ( / )≈ − ⋅ +2 p

, , E E E Ei j
v

i j W E+ += + −1 1, , ( )

; ;  and 

  (11) 

E E h
i j

v
W i+

≈ + ⋅+
+

1 1 2
,

( / )

E E h p
i j

v
W i,

( / )≈ − ⋅ +2

where hi and hi+1 are the horizontal lengths of cell (i, j) and (i+1, j). The four equations above are in fact 

redundant. Therefore we need only to consider either  or , which we choose  in our 

case. The following shows the algebraic manipulation (11): 

Ei j
v
, Ei j

v
+1, Ei j

v
+1,

p E E h hi j
v

i j i i
+

+ += − +2 1 1( ) / ( ) ; ; 

h E E h E Ei W i j i i j E+ +− = −1 ( ) (, ,1 )   (12) 

and then  

E
n h h E h n n E

n h n hi j
v i j i i i i i j i j i j

i j i i j i
+

+ + + + +

+ +

=
+ + −

+1
1

2
1 1 1 1

2 2

2
1

2
1

,
, ,

, ,

( ) ( )
( )

, ,

, ,

  (13) 

With similar procedure between cell (i,j) and cell (i+1, j), we can obtain 

p E E h hi j i j
v

i i
−

− −= − +2 1 1( ) / ( )  and E
n h h E h n n E

n h n hi j
v i j i i i j i i j i j i j

i j i i j i
−

− − − − −

− −

=
+ + −

+1
1

2
1 1 1 1

2 2

2
1

2
1

,
, , , , ,

, ,

( ) ( )
( )

, −1

  

(14) 

where p- is now the field gradient at the boundary between the cells(i-1, j) and (i, j). 

Note that the quasi-TE electric field is continuous in terms of y direction even if there 

are discontinuities in refractive index. Therefore ,    E Ei j
v

i j, ,+ +=1 1 E Ei j
v

i j, − =1

The second derivative can be derived as 

∂
∂

2

2
1

1

1

1

1 1 2 2
x

E
h

p p
h

E E
h h

E E
h hi j

i i

i j
v

i j

i i

i j i j
v

i i
,

, , , ,[ ]
( ) ( )

= − =
−
+

−
−
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ − +

+

−

−

 (17a) 
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∂
∂

2

2
1

1

1

1

1 1 2 2
y

E
h

p p
h

E E
h h

E E
h hi j

j j

i j i j

j j

i j i j

j j
,

, , , ,[ ]
( ) ( )

= − =
−

+
−

−

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ − +

+

−

−

 (15b)  

Thence we get the discrete wave equation as 

∂
∂

2

2
1

2

2
1

2
1

1
1

2

2
1

2
1

1

2

2
1

2
1

2

2
1

2
1

2 2

2 2

x E
n

h n h n h E
n

h n h n h E

n
h n h n h

n
h n h n h E

i j
i j

i i j i i j i
i j

i j

i i j i i j i j
i j

i j

i i j i i j i

i j

i i j i i j i
i j

,
,

, ,
,

,

, , ,
,

,

, ,

,

, ,
,

( ) (

( ) ( )

=
+

+
+

−
+

+
+

⎡

⎣
⎢

⎤

⎦
⎥

−

− −
−

+

+ +
+

− − + +

                 

)
 (16a) 

∂
∂

2

2
1

1

1

1

1 2 2
y

E
h

E E
h h

E E
h hi j

j

i j i j

j j

i j i j

j j
,

, , , ,( ) ( )
=

−

+
−

−

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

+

−

−

  (18b) 

Substituting these into the Helmholz equation, 

C E C E C E C E C E Ei j i j i j i j i j i j i j i j i j i j i j− − + + − − + ++ − + + =1 1 1 1 1 1 1 1
2

, , , , , , , , , , β ,   (17) 

Where C
n

h n h n hi j
i

i i j i i j i
−

−

− −

=
+1

1
2

2
1

2
1

2
,

, ,( )
; 

)(
2

1
2

,1
2
,

2
1

,1
++

+
+ +

=
ijiijii

i
ji hnhnh

n
C ; C

h h hi j
j j j

, ( )−
−

=
+1

1

2
; 

C
h h hi j

j j j
, ( )+

+

=
+1

1

2 ; and    

   (18a) 

C C C C C k ni j i j i j i j i j i j, , , , ,= + + + −− + − +1 1 1 1
2 2

,

The above equations is essentially an eigenvalue equation of 

C E ETE TE TE= β TE
2  (19) 

in which CTE  is a non symmetric band matrix which contains the coefficient of the above equations,  

is the TE propagation eigenvalue, and E

β TE
2

TE is the corresponding normalised eigenvector representing the 

field profile Ex(x, y).  

(II) Quasi-TM Mode 
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The quasi-TM mode can be formulated in similar fashion. The only difference is that for quasi-TM 

polarised mode, Ex is assumed to be zero and Ey is continuous across the vertical interfaces but 

discontinuous across horizontal interfaces. Essentially, the quasi-TM modes are the eigen-solutions of the 

equation 

∇ + =t y y yE k n E E2 2 2 2β   (20) 

The detailed derivation of the equation can be found in the literature.[17]  The following are the derivatives 

and its relevant difference equations: 

∂
∂

2

2
1

2

2
1

2
1

1
1

2

2
1

2
1

1

2

2
1

2
1

2

2
1

2
1

2 2

2 2

y E
n

h n h n h E
n

h n h n h E

n
h n h n h

n
h n h n h E

i j
i j

i i j i i j j
i j

i j

i i j i i j j
i j

i j

i i j i i j j

i j

i i j i i j j
i j

,
,

, ,
,

,

, ,
,

,

, ,

,

, ,
,

( ) ( )

( ) ( )

=
+

+
+

−
+

+
+

⎡

⎣
⎢

⎤

⎦
⎥

−

− −
−

+

+ +
+

− − + +

                 
  (21a) 

∂
∂

2

2
1

1

1

1

1 2 2
x E h

E E
h h

E E
h hi j

i

i j i j

i i

i j i j

i i
,

, , , ,( ) ( )
=

−

+
−

−

+

⎡

⎣
⎢

⎤

⎦
⎥

+

+

−

−

 (23b) 

Substituting these into the Helmholtz equation and we get 

C E C E C E C E C E Ei j i j i j i j i j i j i j i j i j i j i j− − + + − − + ++ − + + =1 1 1 1 1 1 1 1
2

, , , , , , , , , , β ,   (22) 

Where C h h hi j
i i i

−
−

=
+1

1

2
, ( )

 and C h h hi j
i i i

+
+

=
+1

1

2
, ( )

   

 C
n

h n h n hi j
j

j i j j i j j
,

, ,( )−
−

− −

=
+1

1
2

2
1

2
1

2
; C

n
h n h n hi j

j

j i j j i j j
,

, ,( )+
+

+ +

=
+1

1
2

2
1

2
1

2
 and 

 (33e) C C C C C k ni j i j i j i j i j i j, , , , ,= + + + −− + − +1 1 1 1
2 2

,

(III) Eigenvalue Matrix 

To solve the difference equation, we need first to discretized the problem space. We assume that the 

space is sliced into NX pieces along the x direction and NY pieces along the y direction. This will give us 
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a total of N (=NX× NY) grid points. The refractive index of each cell is then allocated according to the 

relevant index distribution. 

When the Finite Difference Wave Equations is evaluated at a grid point, say Ei,j, it will yield a five-point 

linear equation in terms of the E field of the immediate neighbours, namely Ei-1,j, Ei+1,j, Ei,j-1, Ei,j+1, each 

with its relevant coefficient as shown in equations (28) and (33). For a cross sectional area of a 

waveguide with N such grid points, we would end up with N linearly dependant algebraic equations.  

We will now scan through the grid points row after row, at the same time re-labelling the subscripts of E 

from 1 to N. Consider the original grid point (i, j). Assuming that the new sequence number is k, then  

(32) can be rewritten as  

p E l E r E t E b E Ek k k k k k k k Nx k k Nx k+ + + + =− + − +1 1
2β  (23) 

where pk, lk, rk, tk, bk, are the coefficients Ci,j, Ci-1,j, Ci+1,j, Ci,j-1, Ci,j+1, respectively. We can then collect 

terms and write the equations in a matrix form. 

For a 3 3 grid of the refractive index profile, we can write the matrix equations as an the eigenvalue 

equation of  the form [ ]  in which [C] is a non symmetric band matrix which contain the 

coefficient of the above equations,  is the propagation eigenvalue, and [E] is the corresponding 

normalised eigenvector representing the field profile E(i,j). In the next section we will discuss the 

approach that we adopt in solving the eigenvalue problem given as 

×

.[ ] [ ]C E E= β 2

β 2

p r b
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There are a few major features of the matrix equation above: (i) this type of matrix is often referred to as 

tridiagonal matrix with fringes. The order of the matrix is N× N, the square of the total number of grid 

points. Most of terms in the matrix are zeros; (ii) the matrix is non-symmetrical relative to the diagonal 

term; (iii) the central three diagonal terms always exist and are always non zero; (iv) the coefficients p, l, 

r, t, b makes up the five bands of the matrix, with p being the main diagonal, l and r being the 

subdiagonal while t and b the super-diagonal; (v) the subdiagonal diagonal terms are just one term away 

from the main diagonal while the superdiagonal terms are NX terms away from the main diagonal. The 

distance between main diagonal and the last non-zero super-diagonal band is commonly referred to as the 

half bandwidth of a band matrix. (vi) terms such as l1, rN, t1-tNX, bN-Nx-bN are missing. This is so since the 

evaluations of these terms require the E values outside the boundary area, and these values have been 

assumed zero. Therefore they need not be represented. 

2.3 The Inverse Power Method 

The properties and characteristics of eigenvalue problem are well known and have been addressed rather 

extensively in many text book[18, 19]. This section would only provide a brief overview to highlight the 

more specific points related to our particular approach.  

An N N matrix A is said to have an Eigenvector x and a corresponding eigenvalue λ if the following 

condition is satisfied: 

×

A.x=λx  (25) 

There can be more than one distinct eigenvalue and eigenvector corresponding to a given matrix. The 

zero vector is not considered to be an Eigenvector at all. The above equation holds only if 

det|A-λI|=0 (26) 

which is known as the characteristic equation of the matrix. If this is expanded, it becomes an Nth degree 

polynomial in λ whose roots are the eigenvalues. This is an indication that there are always N, though not 

necessarily distinct, eigenvalues. Equal eigenvalues coming from multiple roots are called degenerate. 

Root-searching in the characteristic equation however, is usually a very poor computational method for 
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finding eigenvalues. There are many more efficient algorithms available in locating the eigenvalues and 

their corresponding vectors.  

Unfortunately there is no universal method for solving all matrix type. For certain problems, either the 

eigenvalues or eigenvectors are needed, while others require both. Furthermore, some problems may only 

need a small number of solutions out of the total N solutions available, while others need all. To 

complicate the matter even further, the Eigensolutions could be complex, and some matrices can be so ill-

behaved that round off errors in computing can lead to a non-convergence of the solution. Therefore it is 

of vital importance to be able to choose the right approach in solving an Eigenproblem. Choosing an 

algorithm often involves the classification of matrix into types like symmetry, non-symmetry, tridiagonal, 

banded, positive definite, definite, Hessenberg, sparse, random, etc. The matrix in our problem is a non-

symmetric banded matrix with bandwidth equal to twice the number of columns in the grid profile. It has 

great sparsity for most of the elements are zeros. Also, we need only a few eigenvalues that correspond to 

the guided modes of the waveguide. In other words, there are only a limited number of guided modes, 

hence the number of eigenvalue λ. The number of Eigensolutions required is small compared with the 

size of the matrix (often in the order of tens of thousands). All these different factors have led to the 

choice of the approach called the Inverse Iteration Method[18,19].  

The basic idea behind the inverse iteration method is quite simple. Let y be the solution of the linear 

system 

(A - I) y = bτ ⋅  (27) 

where b is a random vector and τ  is close to some eigenvalue λ of A. Then the solution y will be close to 

the eigenvector corresponding to λ. The procedure can be iterated: replace b by y and solve for a new y, 

which will be even closer to the true eigenvector. We can see why this works by expanding both y and b 

as linear combinations of the eigenvectors xj  of A: 

y = xα j j
j
∑      and         (28) b = xj j

j

β∑

Then  we have  
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α λ τ βj j
j

j j
j

( )− =∑ j∑x x        (29) 

so that 

α
β

λj
j

j

=
− τ

 and y
x

=
−∑

β
λ τ

j j

jj

 (30) 

If τ  is close to λ n , say, then provided β n  is not accidentally too small, y will be approximately xn, up 

to a normalisation. Moreover, each iteration of this procedure gives another power of λ τj −  in the 

denominator of (43). Thus the convergence is rapid for well-separated eigenvalues. 

Suppose at the ith stage of iteration we are solving the equation 

( )A I y− ⋅ = xλ i i  (31) 

where xi and λ i  are our current guesses for some eigenvector and eigenvalue of interest (we shall see 

below how to update λ i ). The exact eigenvector and eigenvalue satisfy 

A x x⋅ = λ ( ) (A I x− ⋅ = )x−λ λ λi i  (32) 

Since y of (31) is an improved approximation to x, we normalise it and set 

x y
yi+ =1  (33) 

We get an improved estimate of the eigenvalue by substituting our improved guess y in 

(33 ). By (34), the left-hand side is xi, so calling λ our new valueλ i+1 , we find 

λ λi i
i

+ = +
⋅1

2x
x y

. 
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Although the formulas of Inverse Iteration Method seems to be rather straight forward, the actual 

implementation can be quite tricky. Most of the computational load occurs in solving the linear system of 

equations. It would be advantageous if we can solve  (44) quickly. It is to be reminded that the size of the 

matrix in our case is dependant upon the total grid size of the problem space. For a typical grid size of 

100 by 100 for example, the coefficient matrix would be of size 10,000 by 10,000. The core memory 

required in a digital computer to store the entire matrix would be phenomenal. Linear system solver such 

as routine that are available in LINPACK employs a common LU factorisation (Gaussian elimination) 

plus backward substitution combination algorithm, much like the manual way of solving linear equations. 

There is an extensive coverage on this topic in most numerical text books[19]. We will therefore not 

discuss it further except to mention that the LU factorisation needs only to be done before the first 

iteration. When the iteration starts, we already have the steps involved in elimination stored away in an 

array and only backward substitution is necessary. This approach, even with a storage optimised mode in 

the LINPACK routine still has a storage requirement of about 3 ×  (Bandwidth of matrix matrix size). 

Even though this would mean a considerable reduction in memory storage, it still amounts to a rather 

substantial memory size.  

×

Also, the preconditioner that employs the Incomplete Cholesky Conjugate Gradient Method[20]  and the 

Orthomin[20] accelerator have been found to be most stable and converges most quickly for our matrix. 

On average, the combination of the preconditioner and accelerator enable us to complete a simulation of a 

typical waveguide in 3 to 5 minutes on a DECAlpha 3000/300L workstation. The same simulation that 

incorporates the LINPACK LU decomposition routine would take 25 minutes on the same computer with 

substantially greater amount of memory. Since the zero elements are no longer involved in the 

calculations, it is understandable that the NSPCG iterative method will perform more efficiently.  

By incorporating NSPCG numerical solver and the Inverse Iterative Method, we have successfully 

implemented a Mode Modelling Program, SVMM(Semi Vectorial Mode Modelling) capable of 

modelling channel waveguide of an arbitrary index profile. The Inverse Iterative Method also enables us 

to model the higher order modes that are supported by the waveguide structure.  
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3 SVMM Mode Modelling 

In every finite difference approach, a few approximations are made and will therefore introduce some 

error into the final result.  The following are a few approximations that are likely to introduce some error 

in our calculation: (i) The approximation of the full vectorial wave equation by the semivectorial one.(ii) 

The replacement of the differential equation with the difference equations.(iii) Discretisation error. (iv) 

Round off error.(v) The error that are introduced by the NSPCG numerical solver itself. 

To assess the accuracy, capability and limitation of our program, we have calculated fundamental mode 

indices of three well-known rib waveguide that are often used as waveguide modeling benchmark.  

Results of polarised modes have been published[4-16].  The geometry of the rib waveguide is shown in 

Figure 4.  Parameter include width of the rib w, height of the rib h, thickness of the guiding layer 

underneath the rib d, index of the substrate ns and index of the guiding layer ng are listed in Table 1.  The 

refractive index of the air cladding region, nc  is unity. 

ng

ns

nc h

d

w

y

x

xdim

ydim

ys

ys

 

Figure 4 Typical Structure of Rib Waveguide 

Guide ng ns d (μm) h (μm) w (μm) 
1 44 34 0.2 1.1 2 
2 44 36 0.9 0.1 3 
3 44 435 5 2.5 4 

Table 1 Parameters of Rib Waveguide for Calculation Benchmark 

The three waveguides each has a different characteristic.  Structure 1 has relatively large vertical 

refractive index steps (  and 0.1) which could, for example, correspond to a GaAs guiding 

layer bound by air and a Ga

Δn = 2 44.

0.75Al0.25As confining layer.  In the lateral direction, the rib height is large and 
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the width narrow.  This structure, with strong light confinement in both lateral and vertical direction, is 

useful for curved guides, as radiation loss is minimised.  This structure does not allow the application of 

Effective Index Method because the slab outside the rib is cut-off.   

Structure 2 shows a weakly guiding feature.  In this case the rib height is much less, allowing the mode to 

extend laterally.  This is particularly useful for directional coupler structures, as strong coupling between 

adjacent guides will result in short coupling lengths.  The guiding layer thickness is made small to give a 

thin mode shape in the vertical direction, and thus low voltage operation.  Essentially, this structure is 

tightly confined vertically and weakly confined horizontally.  Such features enable the application of 

Effective Index Method[10,29,34]  because the small etch step and large width to height ratio are the 

conditions of validity of this approximate method. 

Structure 3 gives a good coupling to an optical fibre.  Insertion loss is a crucial parameter for most 

waveguide devices, and is determined by propagation loss and losses due to mode mismatch.  Fresnel 

reflection loss is also important, but can be reduced to insignificant levels by using λ / 4 anti-reflection 

coatings.  Mode profiles of a circularly symmetric optical fibre and a waveguide will, in general, be 

different, due to the differing refractive indices of the semiconductor and the fibre, and also the differing 

shapes of the modes.   The effects of both these factors may be alleviated by the use of appropriate 

waveguide designs.  In structure 3 the guiding layer is relatively thick, and the stripe width and height are 

adjusted to give a more symmetric mode shape.  In this structure the slab mode is near cut-off.  Again, it 

is also to be pointed out that because the rib height is nearly twice the slab thickness and the rib width is 

less than the rib height, the accuracy of the effective index method is expected to be poor. Figure 5,  
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Figure 6 and Figure 7 are the contour plot and 3-D plot of the TE polarised mode of the three waveguide 

structure calculated by our SVMM program.   
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Figure 5(a): 3 dimensional plot of TE polarised mode profile for Waveguide Structure 1 (b): Contour plot of TE 

polarised mode profile for Waveguide Structure 1 
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3D Plot for TE Polarised Mode
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Figure 6 (a): 3 dimensional plot of TE polarised mode profile for Waveguide Structure 2 (b): Contour plot of TE 

polarised mode profile for Waveguide Structure 2 
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Figure 7 (a): 3 dimensional plot of TE polarised mode profile for Waveguide Structure 3 (b): Contour plot of TE 

polarised mode profile for Waveguide Structure 3 

The grid size hx and hy are 0.1.  Since we assume that the field value around the computational boundary 

is zero, it would mean that we require a much larger computational window for both structure 2 and 

structure 3 so that the assumption would be valid.  This however would means that we either use a 

coarser grid which will means a deterioration in accuracy, or maintaining the grid size but face up with a 

huge eigen matrix to solve.  For that reason, the variable grid size comes in handy.  We can avoid severe 
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storage penalty by judiciously placing the denser mesh around the area the higher field value are assume 

and coarser mesh at region of a much lower field value.  This would thus allow us to extend the boundary 

of the computation without incurring severe storage problem while preserving the accuracy of the 

computation.  The choice of grid size and its influence on the accuracy of the final results would be 

discussed shall be illustrated in the next section. 

1 Choice of Grid Size 

A judicious choice of grid size is rather to produce a plausible simulation result.  To assess the effect of 

grid size on the accuracy of our simulation program, we compute the effective index for the TE polarised 

mode of structure 1 by varying the grid size in both x and y direction, namely hx and hy.  We compare our 

result with the one simulated by P. Lusse et al. [5] which uses a dense mesh of 508 394 mesh points 

their Full Vectorial Finite Difference Method. 

×
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Sim # hx (μm) hy (μm) xdim
(μm)

ydim
(μm)

Total Grid Effective 
Index 

1 0.5 0.1 8.0 7.3 16× 73 3913474 
2 0.25 0.1 8.0 7.3 32× 73 3899896 
3 0.125 0.1 8.0 7.3 64× 73 3895512 
4 0.1 0.1 8.0 7.3 80× 73 3894906 
5 0.05 0.1 8.0 7.3 160× 73 3894048 
6 0.025 0.1 8.0 7.3 320× 73 3893836 
7 0.025 0.05 8.0 7.3 320× 146 3888583 
8 0.025 0.025 8.0 7.3 320× 292 3887148 
9 0.0-2.0 : 0.1 

2.0-2.5 :  0.05 
2.5-0 : 0.025 
0-4.0 : 0.05 
4.0-5.5 : 0.025 
5.5-6.0 : 0.05 
6.0-8.0 : 0.1 

0.0025 8.0 7.3 240× 292 3887162 

10 0.0-2.0 : 0.1 
2.0-2.5 :  0.05 
2.5-0 : 0.025 
0-4.0 : 0.05 
4.0-5.5 : 0.025 
5.5-6.0 : 0.05 
6.0-8.0 : 0.1 

0.0-4.0 : 0.025 
4.0-7.3 : 0.05  

8.0 7.3 240× 226 3887165 

P.  Lusse - - - - 508× 394 88687 

Table 2: Calculation of Effective Index with different choice of grid size. 
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Figure 8 : Refractive index variation with grid size. 

In simulation 1 to 6, we keep a constant value of hy=0.1 while reducing hx from 0.5 down to 0.025.  As 

we can see, as hx reaches 0.025, we can no longer get a significant improvement on the accuracy.  Further 

reduction of grid size down to 0.01 would be highly impractical because we would end up with 800 grid 

points along the x direction, thus paying a high penalty in terms of computer memory.  In simulation 7-9, 

we keep hx at 0.025 while reducing hy from 0.1 down to 0.025, another significant improvement in 

accuracy is shown and the results get very close to the one simulated by P.  Lusse et al.  With both hx and 

hy equal to 0.025, a grid size of 320x292, the difference of our calculated effective index with that of P. 
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Lusse et al is 2.78x10-5.   Simulation 10 and 11 shows how the non-uniform scheme could economise 

storage usage while preserving the desired accuracy.  By placing denser grid mesh around the region 

where higher field values would assumed and coarser mesh for region further away, we manage to reduce 

our mesh size from 320× 292 down to 240× 226 (a total reduction of 39200 points) without significant 

loss in accuracy as can be seen from the graph.  The non uniform grid allocation scheme has in this 

particular case shown its usefulness.  (It is to be reminded that each reduction of grid size need to be 

multiplied by 26 for that is that is the amount of workspace required by the coefficient matrix, 

eigenvector and the NSPCG numerical solver). 

2 Numerical Results 

The following tables shows the result of the propagation constants of both TE and TM polarised mode for 

all three waveguides.  The results are compared with several published results.  The bolded entries of the 

tables are results of our work.  We can see from the tables that our results compares favourably with all 

the other published results.   

Table 3:  

Comparisons of Effective Indices and Normalized Indices at λ=1.55 

 Guide 1 Guide 2 Guide 3 
Methods neff b neff b neff b 

SVMM 3887148 0.4835 3953612 0.4391 4368918 0.3782 
Sv-BPM[8] 388711 0.4834 395471 0.4405 436805 0.3608 
Helmholz[9] 388764 0.4839 395560 0.4416 436808 0.3614 
SI[13] 38874 0.4837 39506 0.4354 43688 0.3759 
SV[47] 3869266 0.4656 3954 0.4401 4368112 0.3621 
FD[46 ] 3882623 0.4789 3952147 0.4373 436804 0.3611 

a) TE Polarised Mode 

 Guide 1 Guide 2 Guide 3 
Methods neff b neff b neff b 

SVMM 3879173 0.4755 390647 0.3803 4368434 0.3685 
Sv-BPM[ 8] 387924 0.4756 390693 0.3809 436772 0.3543 
Helmholz[9] 387990 0.4762 390712 0.3811 346772 0.3543 
SI[13 ] 38788 0.4752 39032 0.3763 43684 0.3669 
SV[ 47] 3867447 0.4638 3905927 0.3796 4367719 0.3542 
FD[ 46] 3875430 0.4718 3905701 0.3794 4367751 0.3549 

b) TM Polarized Mode 
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The numerical results that have been presented so far given us an indication of the order of accuracy of 

the SVMM programs.  From these results, we can see that the results presented by our work compares 

well with other published results.  In other words, we are in the position to apply our program to model 

waveguides of a different index profile. 

2 Higher Order Modes 

In our earlier discussion, we indicated that the Inverse Power Method can be used to work out the other 

eigenmodes of the waveguide.  To illustrate that, we simulate the waveguide mode of the waveguide 

structure published by Rahman and Davies[16].  Table 4 outlines the parameters of the waveguide 

structure.  Figure 9 and Figure 10 shows the fundamental mode and the leading asymmetric mode of the 

TE polarised field. 

Table 4: Parameters of rib waveguide of ref[16] (λ=1.15μm) 

Guide ng ns d (μm) h (μm) w (μm) 
Ref [16 ] 44 40 0.5 0.5 3 
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Figure 9(a): 3-D Plot of Fundamental mode of waveguide from ref [16]. The calculated effective index = 4133105  (b) 

Contour Plot of the fundamental mode of the waveguide from ref [16]
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Figure 10(a): 3-D Plot for the Leading Asymmetric Mode of Waveguide in Ref[16].  Calculated effective 

index=4025302  (b): Contour Plot of Leading Asymmetric Mode of Waveguide in Ref [16]. 

The leading asymmetric mode of Figure 10 can be obtained with an initial eigenvalue that is close to the 

eigenvalue of the leading asymmetric mode.  A good strategy to acquire a good initial guess for an 

independent eigenvalue is by perturbing the last few significant digits of the last calculated eigenvalue.  

In our case, the eigenvalue of the fundamental mode (see Figure 9) was calculated to be 347.78889.   We 

then proceeded to the calculation of the asymmetric mode with an initial guess of 346.  Other eigenmode 

can also be worked out in similar fashion.  However, we need to remember that there is only a limited 

number of eigenmode that supported by certain waveguide structure.  A good indication that the 

particular eigenmode is physically not feasible is an effective index which is lower than that of the 

refractive index of the substrate, thus giving a negative value of the normalized index.  This is illustrated 

in Figure 11. 
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Higher Order Mode Which Is Not Supported By Waveguide
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Figure 11(a) 3-D Plot of the third Order Mode which is not supported by the waveguide structure.  Calculated 

effective index = 3980958, Normalised Index=-0.047314  (b) Contour plot of radiated mode 

The result shown in Figure 11 is acquired by further reducing the initial guess of the eigenvalues from 346 

to 345.  As a result of that, we get an effective index of 398 which is lower that the refractive index of the 

substrate which is 40 in this case.  This results in a normalized index b of -0.047  As shown in the contour 

plot, most of the field is radiated into the substrate of the waveguide. 

This feature of SVMM that enables us to work out the higher order modes is extremely important to find 

out if the designed waveguide can support multimode operation.  We will see in the next section how 

such a feature can be exploited in the design of single mode waveguide. 

So far, we have demonstrated how SVMM can be used to simulated rib waveguide.  We have simulated a 

few rib waveguide structure which has been known to be the benchmark structure for accuracy 

assessment.  We have also compared our work with several published results and confirmed the accuracy 

of our simulation model We have also illustrated the ability of SVMM to solve for the higher order mode 

of a given waveguide.  All these features would be employed to model the optical mode of the Ti:LiNbO3 

waveguide in the next section. 

5 Conclusion 

In this paper, we have successfully developed a computer program that carries out a numerical model 

which is based on a Semivectorial Finite Difference analysis to solve the Helmholz equation. The 
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numerical model that we have formulated is capable of modelling the guided modes in optical 

waveguides of any arbitrary index profile. A non-uniform mesh allocation scheme is employed in the 

formulation of the difference equations to free more computer memory for the computation of waveguide 

regions that bear greater significance. The accuracy of our computer program, SVMM is assessed by 

computing the propagation constants and the effective indices of several rib waveguides that have been 

known to be excellent benchmark waveguide structures. The results of our computation have compared 

favourably with other published results[ 8,9,13,46,47].  We then continue to simulate the optical guided modes 

of diffused optical waveguides in LiNbO3 Our computed mode sizes is consistent with published 

experimental results. Our simulations however, have shown the inadequacies of the adopted diffusion 

model for its inability to model the diffused waveguide in a more robust sense. It is suggested that further 

research to be conducted for a more refine and robust representation of the refractive index profile of 

Ti:LiNbO3 diffused waveguide. Despite the shortcoming of the diffusion model that we have adopted, we 

have demonstrated the potential of SVMM to be used as an analytical and design tool for integrated 

optical waveguide. 
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