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Abstract

We present a method for object detection based on global shape. A distance measure for elas-

tic shape matching is derived, which is invariant to scale and rotation, and robust against non-

parametric deformations. Starting from an over-segmentation of the image, the space of potential

object boundaries is explored to find boundaries, which have high similarity with the shape tem-

plate of the object class to be detected. An extensive experimental evaluation is presented. The

approach achieves a remarkable detection rate of 91% at 0.2 false positives per image on a chal-

lenging data set.
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1 Introduction

The aim of this report is to investigate the potential of global shape as a cue for object detection

and recognition. Both are important visual tasks, which recently have received a lot of attention

in computer vision. In recent years, the dominant approach has been recognition using local

appearance. An object class is represented by a collection of smaller visual stimuli, either linked

by a configuration model (“part-based models” [7, 31]), or without using the relative position

information (“bag-of-features models” [20, 34]). Spectacular results have been achieved, partly

due to new methods of robustly describing local appearance [3, 20].

However, local appearance is clearly not the only cue to object detection, and in fact for

some classes of objects the local appearance contains very little information, while they are

easily recognized by the shape of their contour (see Figure 1). Detection by shape has been

investigated in earlier work. The basic idea common to all methods is to define a distance mea-

sure between shapes, and then try to find minima of this distance A classical method is chamfer

matching [6, 16, 27], in which the distance is defined as the average distance from points on

the template shape to the nearest point on the image shape. However, chamfer matching does

not cope well with shape deformations. Even if a hierarchy of many templates is used to cover

deformations, the rate of false positives is rather high (typically >1 false positive per image).

More sophisticated methods allow the shape template to deform, so that it can adapt to the image

content, including methods such as spline-based shape matching [12], diffusion snakes [10], and

active shape models [8]. The distance in this case is the deformation energy (the “stretching”)

of the template shape. However, all the mentioned deformable template matching techniques are

local optimizers, and thus require either good initial positions or clean images to avoid local min-

ima. They are therefore not a viable option by themselves, because we are concerned with the

detection of objects, which may appear anywhere in the image, and form only a small part of the

entire image content. In this report, we will propose a search strategy, which relieves the prob-

lem of false local minima, at the cost of having to re-evaluate the shape distance at each search

step. We will devise a probabilistically motivated shape distance, which can be computed more

efficiently. The proposed distance requires closed contours, but nevertheless can be interpreted

as a deformable template matching method.

Recent shape matching techniques include the one of [14], which finds the optimal grid

location for all vertices of a polygonal model by dynamic programming. However, the method
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Figure 1: Some object classes are by their nature easier to recognize by shape than by local

appearance. Examples from the swan and hat classes of our data set.

is quadratic in the number of potential locations, so the object needs to cover a large part of the

image, otherwise localization becomes prohibitively expensive (quantizing the location to 1
100

of

the image size already leads to computation times in the order of one hour to detect a single object

in an image). A powerful shape matching method has been presented in [4], which uses integer

quadratic programming to match sets of points sampled from object edges. In practice, either

a good initial position or relatively clean images are required, similar to deformable template

matching methods, because computational demands limit the amount of outliers the method can

deal with.

Recently, researchers have moved from the original models, which describe the shape of

the entire object in one piece (from now on called global shape models), to an object model

consisting of local pieces of the contour in a certain configuration [11, 28, 33], similar to earlier

appearance-based models. Methods using contour fragments generally also model their relative

position, since short boundary fragments are not specific enough to use in a bag-of-features

model: the shape of the contour is only a useful cue when seen in the global context of the

object, while the local shape of fragments contains little information. This last observation leads

to a renewed interest in matching larger sections of contours [15].

Here, we will present an approach to object detection by global shape, which is based on

elastic matching of contours. An edge-map with closed edge chains is produced by segmentation

into super-pixels. A probabilistic measure for the similarity between two contours is derived, and

combined with an optimization scheme to find closed contours in the image, which have high

similarity with a template shape. The method only requires a single object template, which in our

case is a hand-drawn sketch, but could also be learned from examples. An extensive experimental
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evaluation is presented which compares the elastic matching approach to chamfer matching as

well as an appearance-based method.

2 Detection by contour matching

In the following section an elastic shape-matching approach to object detection is described in

detail. It covers the detection of potential object contours in the input image, the contour model

used to describe a contour’s shape, a probabilistically motivated distance measure to compare a

candidate shape to an object class template, and an optimization framework to find shapes in the

image, which have high similarity to the template.

2.1 Segmentation vs. edge detection

The first step towards shape-based object detection is to extract potential object contour points

from the input image, which then are compared to a shape template. The short-comings of this

basic edge detection has been one of the major difficulties for shape-based object detection.

Deformable template matching techniques have largely avoided the problem – although they

provide a way of measuring the distance between two shapes, they cannot be regarded as object

detection methods: they generally assume that there are not many spurious edges, which will

distract the search, hence they either require clean images of the objects without clutter, or an

approximate solution, which assures the optimization is not mislead by the clutter.

On the other hand, earlier attempts at shape-based object detection were plagued by high rates

of false positives (1-2 per image in [16]), partly because of the poor quality of the underlying

edge detection, which for real images often gives broken contours, swamped by large amounts of

clutter. To overcome the problem, Ferrari et al. have used the sophisticated (but computationally

expensive) edge detection method of [23], and then link the resulting edges to a network of

connected contour segments by closing small gaps.

Instead, we rely on a different way of avoiding clutter and obtaining good edges. The ba-

sic intuition is similar: objects shall have closed contours, and clutter edges will normally not

form closed contours. We therefore prefer to work with an edge map, which only consists of

closed contours to begin with. This cannot be easily achieved by pixel-wise edge detection, but

is trivially solved by segmentation, since the boundaries of segments obviously are closed. To
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make sure the boundaries are complete, segmentation is parametrized in such a way that it al-

most certainly leads to over-segmentation, rather than risking that parts of the object contour are

missing. This strategy of segmenting into “super-pixels” has been inspired by [5, 18, 29], where

the authors also rely on over-segmentation, respectively multiple segmentations with varying

parameters, to make sure no important boundaries are missed.

For our purpose, we observe that region-based methods, which merge pixels satisfying some

homogeneity criteria, usually give better boundaries. Spectral segmentation methods such as

normalized cuts [32], which are really based on edge detection, tend to give overly smooth seg-

mentations. This is not a problem if the boundaries only serve to delineate regions, which are

then used to build an appearance-based model, but it does impair our application, where the

shape of the boundary itself is the cue.

(a) (b) (c) (d)

Figure 2: Segmentation of swans in natural images. (a) An easy image – complete object bound-

ary, object mostly covered by one segment. (b) The most frequent case – complete object bound-

ary, object broken up into several segments. (c) A difficult case – segments do not completely

trace the object boundary, but the characteristic shape is preserved. (d) A rare case, where seg-

mentation catastrophically fails.

In this work we have used the excellent “statistical region merging” segmentation of [25],

which not only produces good segmentations, but also is very efficient: on a standard PC, seg-

mentation starting from the raw input image takes less than 1.5 seconds for a 512×512 pixel

image. Some results are presented in Figure 2 to show the quality of segmentations obtainable

with natural images. We note that if one accepts over-segmentation, the object contour is com-

pletely found in the majority of images. In some cases, parts of the boundary are missed, but

nevertheless the contour does preserve enough of the specific object shape to perform detection.

Only in rare cases does the segmentation catastrophically fail to delineate the object.

The edge map obtained by segmentation forms the basis of the entire detection chain outlined

in the following: the fact that the extracted contours are naturally closed is an essential ingredient
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for the shape matching, while the neighborhood system defined by the super-pixels guides the

search in the image space.

2.2 Shape Model

We adopt the following shape model to describe an object: a shape X is approximated by a closed

polygon with a fixed number of equally spaced vertices N . Since the points are equally spaced,

the sequence of points can be parametrized by an integer arc length: X = {x(u), u = 0 . . . N −

1}. The last vertex coincides with the first one for computational simplicity: x(N) = x(0).

As a shape descriptor X ′ for the contour X , we use the sequence of tangent angles. To attach

the descriptor to the contour rather than the image coordinate system, the angles are normalized

by aligning the first tangent vector with the x-axis. Let the tangent vector at point x(u) be

denoted by ẋ(u) =
[
ẋ(u), ẏ(u)

]
, then

X ′(u) = {x′(u), u = 0 . . . N − 1} , where x′(u) = arctan
ẏ(u)

ẋ(u)
− arctan

ẏ(0)

ẋ(0)
. (1)

To account for the noise-sensitivity of differential quantities, it is usually recommended to smooth

the raw gradients, which we do with a simple averaging filter over a 3-neighborhood.

It has been suggested that when using differential invariants to describe shapes, curvatures

(sometimes called “turning angles”) are more appropriate than tangents [1, 2]. While curvature

is theoretically robust to articulated deformation, we found that it does not work well in practice,

because the degree of invariance becomes too high: even a simple bending, which only changes

the curvature in a few points, can dramatically alter the shape of an contour (see Figure 3(a)).

Tangents better preserve the global shape. An experimental comparison of the two option is

given in section 3.8.

The descriptor is by construction invariant to translation, and to scale including the smooth-

ing: segmentation is always carried out at the full resolution, so the contour of an object will have

more small details if it appears larger in the image, making the local tangent estimation directly

from the contour unstable. Sampling a fixed number of vertices and using these to compute the

tangent implicitly rescales all shapes to a common size and ensures the descriptor has the same

level of detail independent of the scale.

Given the segmentation of the image into super-pixels, it is easy to compute the shape de-

scriptor: any group of adjacent super-pixels has a closed contour, which can be extracted with

a boundary-tracer, and down-sampled to the desired resolution N . In all experiments presented
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here, we have set N = 100, which has proved to be a reasonable setting for all classes we have

tested. To improve efficiency, it may be useful to separately determine the required number

of vertices for each class from the shape complexity. An experimental comparison of different

contour resolutions is given in section 3.7.

(a) (b)

Figure 3: Representing and matching shape. (a) Curvature is not suitable as shape descriptor –

changing the curvature of the hat boundary in only four points results in a dramatically different

shape. (b) Non-linear elastic matching of contours. Only a subset of the total of 100 tangents per

contour has been plotted.

2.3 Matching Shapes

Given are two shapes X and Y , one for the shape template, and one for a candidate contour

extracted from a test image. A matching between the two shapes is a function, which associates

the point sets {x(u)} and {y(v)} (both parametrized by their arc length), such that each point

on either curve has at least one corresponding point on the other curve. The same point on X

can have multiple matches on Y and vice versa, as long as the ordering of both sequences is

preserved. A matching is given by the sequence of arc lengths of the matching contour points.

For the moment, assume that we know one pair of matching points on the two contours (this

restriction will be removed later), and let the arc lengths at these points be (u = v = 0). Then a

matching of the two contours is given by

V(X, Y ) =
{
〈ui⇔vi〉, i = 1 . . . KV

}
=

{
〈0⇔0〉, . . . , 〈ui⇔vi〉, . . . , 〈N⇔N〉

}
. (2)

A matching V has a variable number KV of individual point matches, with N ≤ KV ≤ 2N

because of the requirement to close the loop at 〈0⇔0〉. The probability that two points match

can be decomposed into two components, one for their similarity, and one for the local stretch of

the curve: P (ui⇔vi) = PD(ui⇔vi)PS(ui⇔vi). An assignment between two points is deemed
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more likely, if the local tangent angles of the two curves are similar, and if no local stretching is

required to make the two points match. See Figure 3(b) for an illustration. To account for the

stretching, and to ensure a complete and ordered matching, we define

PS(ui⇔vi) =
1

1 + e−E
e−S(ui,vi) , where (3)

S(ui, vi) =





0 if (ui−1 = ui − 1 , vi−1 = vi − 1)

E if (ui−1 = ui , vi−1 = vi − 1) or (ui−1 = ui − 1 , vi−1 = vi)

∞ else

. (4)

The first two cases assure that matching two points without stretching the curve has a higher

probability than matching them with stretch. The third case assures only valid assignments are

made, by forbidding assignments which skip any ui or vi, and assignments which do not follow

the sequence.

Next, we have to provide PD(ui⇔vi), or in other words, we have to decide how to measure

the dissimilarity D(u, v) between two points x(u) and y(v). The dissimilarity is a non-negative

function of the tangent angle difference, defined over the interval [−π, π]. There are different

possibilities such as the absolute value, square, or cosine (see section 3.5). Whichever we decide

to use, we end up with a matching probability of the form

PD(ui⇔vi) =
1

H(B)
e−B·D(ui,vi) , (5)

where, given the functional form of the exponent, H(B) is a constant, which normalizes the

probabilities so that they integrate to unity. As will be seen later, the constant B does not

qualitatively change the cost function, but only leads to a different penalty for contour stretch-

ing. In our experiments (except for the comparison of different dissimilarity measures in sec-

tion 3.5), we have set B = 1, and used a wrapped Laplace distribution, so H = 2(1− e−π) and

D(ui, vi) = |x′(u)− y′(v)|.

Taking the product over all points on the contour gives the total probability of a certain

matching V . Note that the number of individual assignments 〈ui⇔vi〉 reaches its minimum

KV = N if no stretching occurs at all, and its maximum KV = 2N if all assignments produce

local stretching of one of the contours.

P (V) =

KV∏

i=1

PD(ui⇔vi)

KV∏

i=1

PS(ui⇔vi) . (6)
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Among the combinatorial set of possible matchings between two contours, we are interested

in the most likely one, which we will call the best matching. The best matching is the one which

minimizes the negative log-likelihood

C(V) = B

KV∑

i=1

D(ui, vi) +

KV∑

i=1

(
Q + S(ui, vi)

)
, where Q = − log

(
H(1 + e−E)

)
. (7)

If we make sure that only valid matchings are compared, then the case S = ∞ will never

happen. Furthermore there will be exactly 2(KV − N) individual point matches with S = E,

and (2N −KV) matches with S = 0. Using these quantities, we can expand the second sum in

equation (7), subtract the constant NQ from the cost, and multiply by B, to yield the cost for the

best matching (the “distance” between the two shapes)

C̃(X, Y ) = min
V

[ KV∑

i=1

|D(ui, vi)|+ B(KV −N)(Q + 2E)

]

s.t. u1 = v1 = 0 ; uK = vK = N ; ∀ i : ui+1 − ui ∈ {0, 1} , vi+1 − vi ∈ {0, 1} .

(8)

The cost function is of a form which allows one to efficiently find the best matching for a given

pair of starting points by dynamic programming, with complexity O(N2), as described in the

following section. A distance defined in this way is known in the pattern recognition literature

as the “non-linear elastic matching distance with stretch-cost R”, abbreviated NEMR [9, 36],

where the stretch-cost is R = 1
2
B(Q+2E). The distance is formally a semi-metric, and satisfies

a relaxed form of the triangle inequality [13]. More important for practical purposes, it increases

gracefully with growing distortion due to viewpoint change or non-rigid deformation. We note

in passing that a similar shape distance based on integral rather than differential invariants has

recently been proposed by [21].

So far, we still need to know one pair of matching points in advance – in the derivation above,

these points have been chosen as the starting points x(0) and y(0). This can be resolved easily

by iteratively testing different relative rotations, which at the same time makes the cost invariant

to rotation. To achieve a rotation of contour X relative to contour Y , the tangent angles x′(u)

have to be shifted in a circular manner, and then re-normalized such that x′(0) = 0 for the new

starting point. Note that in some situations, such as for rotationally symmetric objects or objects

which cannot be turned on their head, it may be better to opt for partial invariance by only testing

a certain range of rotations.
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2.4 Computing the shape distance

Finding the matching C̃(X, Y ) between two ordered sets, which results in the minimum cost, is a

classical application of dynamic programming [19, 24, 26, 30]. Formally, the matching problem

is converted into a path-search problem in a directed graph, in which each node represents a

matching of a certain point pair 〈ui⇔vi〉. Here, we will give a brief intuitive explanation, rather

than the exact graph-theoretic formulation, which is quite cumbersome. Again, let us for the

moment assume that one matching point pair u = 0, v = 0 is known.

The first step is to compute the (N × N) dissimilarity matrix D, with the dissimilarities

dij = D(ui, vj) between all possible pairs of vertices as its elements (in practice, there is an upper

limit to the shape deformation, so only a band of values along the diagonal is required). We know

that the first point (which is the same as the last point, see above) must match: 〈0⇔0〉, 〈N⇔N〉.

The task thus is to find the path from d00 to dNN , which has the lowest cumulative cost due to

dissimilarity and stretching. Furthermore, every vertex on either contour must have at least one

match, and the vertex ordering must be preserved, so at any point {i, j} along this path there are

three possible continuations:

1. match the next pair of vertices without stretching the contours, by moving to {i+1, j +1};

2. locally stretch X: match its next vertex to the current one on Y , by moving to {i + 1, j};

3. locally stretch Y : match its next vertex to the current one on X , by moving to {i, j + 1}.

The three possible steps directly define the recursion for the cumulative matching cost matrixR

– see Algorithm 1. The distance between the two contours is the total matching cost rNN , which

has been accumulated when one is back at the starting point. The pointwise assignment between

the two contours is not required for our purposes, but can be easily found by back-tracking the

path from rNN to r11 – see Figure 4.

To achieve invariance to rotation, one has to add an outer loop to the shape distance compu-

tation, which moves the starting point along one of the two contours. As mentioned above, in

many cases partial rather than complete rotation invariance is desired, either because an object

class exhibits rotational symmetry, or because the object is rarely encountered in a certain range

of orientations (for example, the starfish and swan classes in section 3). For such objects, a prac-

tical solution is to roughly align them with a simple heuristic, and only allow a restricted range

of rotations around the alignment. In our experiments, we have simply set the initial orientation
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Input: Shape descriptors {x′(u)} and {y′(v)}

Output: ShapeDistance

allocate DN×N ,RN×N ;

// compute vertex dissimilarities

for i = 0 to N do

for j = 0 to N do

di,j ← D(ui, vi) ;

end

end

// compute cumulative matching cost

r0,0 ← d0,0 ;

for i = 1 to N do

ri,0 ← ri−1,0 + di,0 + R ;

r0,i ← r0,i−1 + d0,i + R ;

end

for i = 1 to N do

for j = 1 to N do

h10 ← ri−1,j + R ;

h01 ← ri,j−1 + R ;

h11 ← ri−1,j−1 ;

ri,j ← min(h10, h01, h11) + di,j ;

end

end

ShapeDistance← rN,N ;

Algorithm 1: Dynamic programming recursion to find the shape distance C̃(X, Y ).

by identifying the topmost vertices on both contours, i.e. the ones with the minimal y-coordinate.

Other possibilities include using curvature maxima, or principal components of the contour.

2.5 Detecting objects

The non-linear elastic matching distance is a measure for the similarity between two contours.

What is still missing is an optimization framework to find the contours in the edge map, which

have the highest similarity with a given object template. Any group of neighboring super-pixels

forms a closed contour, and the combinatorial set of all such contours is the search space for ob-
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(a) (b)

Figure 4: Minimizing the shape distance by path search. Best path overlayed on (a) dissimilarity

matrix D, and (b) cumulative cost matrixR. Brighter colors denote larger values.

ject detection. Unfortunately, the non-linear elastic matching distance over this set is essentially

an oracle, and not amenable to any simple optimization procedure.

Currently, we are using a greedy multi-start gradient descent (pseudo-code is given in Algo-

rithm 2). Each super-pixel in turn is chosen as seed region. Starting from the seed region, the

method attempts to reduce the elastic matching distance as much as possible by merging one of

the neighboring super-pixels into the region. This is repeated until a local minimum is reached,

and no further improvement is possible. The local minima for all seed regions are considered

potential detections. A detection threshold is used to weed out those with low similarity.

Since several starting regions may converge to the same or similar local minima, non-minima

suppression is performed as a last step: each candidate detection is visited in decreasing order of

similarity, and all candidates, which overlap with the current one by more than a certain threshold

(in all our experiments set to 30%) are removed.

The described optimization scheme is rather weak – if adding two super-pixels together to

a solution would lead to a better minimum, this possibility will be missed, unless adding only

one of them is the best intermediate step. This may well prevent some correct detections in

cases where super-pixels have complicated shapes. Replacing the greedy descent with Tabu-

search [17] did not improve the results in our experiments, and the development of a more so-

phisticated optimization scheme is left for future research.
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Input: object template, list of super-pixels, detection threshold, overlap threshold

Output: detected objects

foreach SuperP ixel do

// greedily maximize similarity

set object candidate: Candidate← SuperP ixel ;

set Distance← NEMR(Candidate, Template) ;

while Distance decreases do

set Neighbors← adjacent Superpixels of Candidate ;

foreach Neighbor do

compute NEMR(Candidate ∪Neighbor, Template) ;

end

find Neighbori which most decreases the Distance ;

set Candidate← Candidate ∪Neighbori ;

end

// only keep candidate if similarity is high

if NEMR(Candidate, Template) > DetectionThreshold then

delete Candidate ;

end

end

// non-minima suppression in candidate list

sort Candidates in descending order of Distance ;

for i = 1 to #Candidates do

for j = i + 1 to #Candidates do

if Overlap(Candidatei, Candidatej) > OverlapThreshold then

remove Candidatej ;

end

end

end

// return detected objects

Detections← Candidates ;

Algorithm 2: Multi-start gradient descent to detect objects which are similar to a template.
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3 Experimental results

We have extensively tested the proposed object detection scheme. The experimental evaluation

starts with detection results on different data sets, and then presents an in-depth study of different

variants of the method and different parameter settings, all on the same standard data set.

3.1 Comparison with baseline methods

As a main testbed, we use a collection of four diverse object classes, which have in common

that they are mainly defined by their global shape, while they have either little texture at all,

or strongly varying texture, which is difficult to use as a generic cue. The database contains

50 images for each class collected from Google and Flickr, some of which show multiple

instances of the same class. Objects appear over a range of scales, with different backgrounds

and large, realistic intra-class shape variation.1

As object model, the system is given a hand-drawn shape sketch for each class, together with

the (empirically determined) stretch cost R. Note that the optimal stretch cost may differ between

classes: on one hand, some shapes are more unique than others, and require a lower penalty for

stretching in order to be discriminative; on the other hand, certain types of objects can deform

more than others (see section 3.6 for more details on this issue).

The test images were segmented into super-pixels with the “statistical region merging” code

of [25] (code available from author’s web-page). All images were segmented with the same

parameters: since it is not known in advance, whether a test image contains an instance of a

certain object, it is not permissible to use class-specific information in the segmentation.

Figure 5 shows example detections. Each image is shown together with the segmentation

into super-pixels (in white), and the detection result (in black). The last image for each class is

an example of a false detection.

It can be seen that the method can cope well with shape variations including significant

viewpoint changes, see for example images A2, B3, B4, images C2, C4, D2, and images E1, F1,

F2. Note that a single template is able to cover wide intra-class variability, which would require

a large fragment base in a contour-fragment model. As long as the characteristic shape is largely

1Two classes, swans and applelogos, are extensions of the same classes in the data set of [15]. We could not

use all their data: our method cannot handle open templates; and, although in principle possible, we do not consider

consensus voting for templates consisting of more than one contour.
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preserved, the method also exhibits some robustness to imperfect segmentations, which deviate

from the true contour, for example A2, A5, B4, F3. Some correct detections have imperfect

contours, because the super-pixels happen to fall such that a part of the true object matches the

template better than the whole object, see D2, F4, G3. Super-pixel segmentation can in many

cases avoid overly strong edge clutter – B3, F2. Very fine-grained segmentation increases the

chance of a false positive, such as in D4, but even in the presence of many super-pixels the

chance for this is comparatively low – see E3, H1. The object does not have to cover a large

image area – D3, H2. Finally, typical false detections indicate that elastic matching allows some

deformations, which lead to implausible shapes - see B5, H5. This suggests that the method could

be improved by learning the permissible deformations of a class from examples and making the

dissimilarity cost dependent on the arc length.

Quantitative evaluation results are shown in Figure 6. Four detection methods were com-

pared:

Chamfer matching with Canny edges. Edge pixels are extracted from the test image with

the Canny edge detector, and the Euclidean distance transform is computed on the edge map.

The distance transform image is then convolved with the object template at different scales and

rotations. We have used 8 scales with a scale factor of 1.2 between consecutive scales, and

20 rotations equally spaced between -36◦ and 36◦. After checking all templates, non-maxima

suppression was performed by ordering the potential detections by increasing chamfer distance,

and iteratively removing all detections, which overlap a detection with a lower distance by more

than 30%. The results are given in Figure 6 (red dashed lines). On average, chamfer matching

achieves a detection rate of 16% at 0.2 false positives per image (FPPI), and 27% at 0.4 FPPI.

Chamfer matching with Super-pixels. In order to validate our way of finding the edge map,

we have used the same chamfer matching method again, but with the edge maps produced by

region-based segmentation, instead of the Canny detector. The reduced amount of clutter, and

more faithful edge maps, give a significant improvement in the detection results – see Figure 6

(blue dashed lines). Detection rates are 23% at 0.2 FPPI, and 38% at 0.4 FPPI. These correspond

well with the results of [15], where chamfer matching with good quality edge maps achieves

approximately 23% detection rate at 0.2 FPPI, and 39% at 0.4 FPPI.

Part-based recognition. This serves as a baseline for part-based recognition using local appear-

ance. Ten representative images were picked from each class, and a five-part star-graph model

was manually trained. All five parts had to be chosen on distinctive, highly curved parts of
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Figure 5: Detection results with elastic matching.
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the object boundary, since no characteristic parts with discriminative texture are present in the

objects’ interior. Similarity between parts was measured with the absolute value of the normal-

ized cross-correlation, to account for the fact that our data contains both dark object instances

on lighter background, and light instances on darker background. The relative weight between

appearance and configuration of the regions was chosen empirically for each class to give the

best detection results. Non-maxima suppression was performed in the same way as for chamfer

matching.

The comparison is slightly biased in favor of the part-based method: firstly, the ten train-

ing images are part of the test data. secondly, we found that a multi-scale version produced

large numbers of false positives, therefore the results were obtained at a fixed scale, after man-

ually rescaling the test data to a common object size. Note that part-based recognition, as an

appearance-based method, is confused by object classes with strongly varying texture. In the

absence of distinctive parts such as eyes, wheels etc., distinctive regions are only available along

the boundary, and part-based recognition then works best for classes which are relatively homo-

geneous and untextured (swans, hats) – see Figure 6 (red solid lines). Average detection results

were 51% at 0.2 FPPI, and 58% at 0.4 FPPI, with much lower results for the starfish data, which

exhibits a wide variety of object textures.

Elastic Matching. The proposed method as described in section 2.5, with N = 100 points

per contour, and the L1-distance as tangent similarity (see section 3.5 for other distances). The

starting point on both shapes was chosen to be the point with the smallest y-coordinate, and

rotations of up to ±10 vertices were allowed, similar to the ±10% rotation used for chamfer

matching. Note especially that the detection rates grow very quickly as the detection threshold

increases, giving high detection rates already at very low numbers of false positives – see Figure 6

(solid blue lines). Average detection results were 91% at 0.2 FPPI, and 93% at 0.4 FPPI. These

numbers cannot be directly compared to other methods, since they use different data sets, but

the best reported results for detection with a single shape template, of which we are aware, are

approximately 65% at 0.2 FPPI, and 82% at 0.4 FPPI [15].

3.2 ETHZ shape classes

In order to get a direct comparison to the state-of-the-art in contour-based detection, we have

also tested our method for the swan and applelogo classes of Ferrari et al.: their data-set consists
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Figure 6: Comparison of detection results.

of 255 images, including 40 with Apple-logos and 32 with swans, which also form part of the

previously used test database. The results are summarized in Table 1 – global elastic matching

clearly outperforms piecewise contour segment matching. Note however that the latter is more

general, and can handle open contours. Note also that our results for the Apple-logo are obtained

without using the leaf, because we have chosen to restrict this investigation to a single contour,

and have not implemented consensus voting over multiple closed polygons.

0.2 FPPI 0.4 FPPI

Swan Apple Avg. Swan Apple Avg.

NEMR 94% 86% 89% 97% 88% 92%

[15] 73% 52% 61% 94% 73% 82%

Table 1: Detection rates of global elastic matching and piecewise contour matching.

3.3 Caltech101 classes

As a further dataset, we have selected three classes with characteristic shapes from the Cal-

tech101 database. The classes stopsign, yinyang, and mandolin, together with 99 images from

the background class, were selected, to form a dataset with a total of 266 images, including 64

with stop-signs, 60 with Yin Yang symbols, and 43 with mandolins (see Figure 7 for examples).

The images are dominated by the object and usually contain little clutter, but some are of bad

quality, with poor contrast, low resolution, and strong compression artifacts. The shape templates

and detection results are shown in Figure 8.

While the method performs well on the first two classes, it has difficulties with some images

of the mandolin class. About 65% of the objects are detected fine, then the detection rate flattens

out. The reason is that, due to poor image contrast (see Figure 9 for examples), the super-pixel

segmentation catastrophically fails, so that important parts of the contour are missing. Therefore

some objects cannot be detected. Obviously, the missing contours also impair chamfer matching,
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Figure 7: Example images from of Caltech101 data set.

so that the curves for elastic matching and chamfer matching based on super-pixels converge.

Chamfer matching based on Canny edges copes better with the low-contrast images – partly due

to the fact that the objects cover most of the image area, so that even randomly distributed edge

pixels will eventually trigger a detection with sufficient overlap.

Figure 8: Detection results for Caltech images.

The inability to deal with cases, in which significant parts of the contour are missing, is in-

herent to a global approach. In order to overcome it, additional cues such as the shape or color

of object parts are required. A plausible strategy seems to be a feedback loop (“hypothesize-

and-verify”), which employs local cues to generate weak hypotheses, uses these hypotheses to

guide a more sensitive search for discontinuities around the “hallucinated” contour parts, and

uses the global object shape for verification. In fact a similar behavior can be seen in humans:

for example, in the left most image of Figure 9, a quick glance only reveals the corpus of the in-

strument, and one has to actively search for the camouflaged fingerboard, in order to “complete”

the mandolin and ascertain its class (and similar for the corpus in the second example). Further

investigation of this issue is left for future work.

3.4 Localization accuracy

For all results reported so far we have used the same definition for a detection as in [15], in

order to make results comparable: let A(region) be the area of a regions bounding box, then a

detection is correct, if
A(template∩object)

max(A(template),A(object))
> 0.2 (according to a personal communication with
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Figure 9: Overly poor image contrast causes super-pixel segmentation to fail.

the authors). However, this threshold is rather generous, and classifies many cases as correct, in

which the object is poorly localized, while one of the strengths of the proposed method is that

the global contour shape enables accurate localization.

Figure 10: Localization accuracy of different methods.

To test the localization accuracy of different methods, we have therefore repeated the detec-

tion experiment of section 3.1 with a higher threshold of 50% overlap, which to us seems a more

realistic definition of a successful localization. Figure 10 shows the results. It can be seen that

the detection rate for the proposed method barely changes, confirming its good localization ac-

curacy. On the contrary, the detection rate for chamfer matching is markedly lower with a tighter

threshold (chamfer matching results are only given for super-pixel edges, which always outper-

formed Canny edges). The detection rate for the part-based method is much lower: often some

parts are detected incorrectly – it seems that the shape constraints imposed by the star-graph are

fine for highly distinctive appearance regions, but not strong enough to characterize the global

shape of contours with some variation.

3.5 Influence of dissimilarity function

As explained earlier, given the tangent difference α = x′(u) − y′(v), there are many ways to

define the dissimilarity function for matching points, and thus the matching probability PD(α).

The dissimilarity should be a symmetric, non-negative function in the interval [−π, π], with

D(0) = 0. Natural choices are
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• D = |α|, which leads to a (truncated) Laplace distribution PD(α).

• D = α2, which leads to a (truncated) Normal distribution PD(α).

• D = (1− cos α), which leads to a von Mises distribution, and would be the correct choice

if the difference is considered to be the sum of a large number of random influences on the

tangent direction.

Note that the the parameter B in PD(α), which essentially defines the second moment (the

“width”) of the distribution, does not qualitatively change the matching: as shown by equa-

tions (7) and (8), changing B does not change the form of the cost function, but only the value

of the stretch-cost R.

Choosing the absolute differences, i.e., the Laplace distribution, makes matching more robust,

due to the heavier tail (this is similar to the robustness of the L1-norm compared to the L2-norm).

The wrapped Normal and von Mises distributions are equivalent for our purposes, since in the 1-

dimensional case they can be made to closely approximate one another, by setting the appropriate

parameters [22]. We will therefore not consider them separately.

We have run the detection experiment with both the wrapped Laplace distribution (our stan-

dard setting also used in all other experiments), and with the wrapped normal distribution, in

order to compare the functions. The stretch-cost has been set to the optimal value for each

version. Experimentally, the difference between the two distance functions is small, with the

absolute differences performing slightly better. On the whole the results seem to suggest that the

sampled and smoothed tangent angles are already a robust representation of the contour shape,

so that there is not much room for improvement using the L1-norm rather than the L2-norm. The

detection rates for both dissimilarity functions are depicted in Figure 11.

Figure 11: Detection performance with different distance functions.
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3.6 Influence of stretch-cost

Another issue is how to determine the appropriate stretch-cost to penalize deformations of the

template shape. It depends on several class-specific properties in a rather complex way:

• if a class has a unique shape, one can afford a lower stretch-cost, since even comparatively

strong deformations will not render the contour ambiguous. For example, the swan class

needs a low stretch-cost: the shape is unique, in the sense that it is rather uncommon

and not many other scene parts will exhibit a similar contour pattern. On the contrary,

the hat class requires a high stretch-cost, because elongated blobs with a protrusion occur

frequently in the contour network.

• if a class has wide intra-class variability (such as for example swans), it requires large

deformations and hence low stretch-cost, while other classes have only little variability,

and one will select a higher stretch-cost to avoid false detections (for example stopsigns).

• if a class template has few inflection points, and sharp creases, then there is less chance

that it can be stretched to fit an arbitrary contour, hence a low stretch-cost suffices (for

example, the applelogo template does not require a high stretch-cost, because it can never

be made to match any contour with more than one indentation). On the contrary, if there

are many inflection points, and the tangent changes smoothly along the contour, a higher

stretch-cost is required, because it can be deformed to approximately fit almost any shape

(for example the starfish).

Since the stretch-cost R is a class-specific property, it needs to be determined separately for

each class from examples, and it is interesting to see how sensitive the method is to the value of

R. We have empirically investigated this question by repeatedly running the method on the same

data with different values, while all other parameters were kept constant. Results are displayed

in Figure 12. As a general trend we remark that there is a reasonable range of values, within

which the exact setting is not critical (e.g., R ∈ [0.2, 0.6] for swans, and R ∈ [0.6, 1.0] for hats).

Very low settings close to R = 0 are not satisfactory even for very unique shapes like swans or

yinyang.
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Figure 12: Detection performance with varying stretch-cost.

3.7 Influence of contour sampling

Another parameter required for the method is the number of vertices for the polygonal approx-

imation of a contour. While in principle denser sampling should give higher accuracy, there

are two arguments against overly fine quantization: firstly, the number of vertices should not

be larger than the number of pixels of the original image contour, to avoid up-sampling artifacts

which may distort the computation of tangent angles; and secondly, the computational cost of dy-

namic programming grows quadratically with the number of vertices, making too fine sampling

prohibitively slow.

Again, we have repeated the detection experiment with different settings in order to empiri-

cally determine the effect of the numbers of vertices. Detection results are shown in Figure 13.

Again, there is a certain tolerance region within which the exact choice does not matter. Our data-

set covers a wide range of scales, with object contour lengths ranging from approximately 125 to

2000 pixels. For this data, 100 points proved to be enough to accurately represent all tested con-

tours, while smaller numbers performed significantly worse. Note that the optimal stretch-cost

depends on the number of vertices. If fewer vertices are sampled from the same contour, then a

local stretch in one vertex has a larger influence on the total cost. This is mostly compensated

by the fact that the stretch in that case should be more expensive, since it corresponds to a larger

shape deformation. However, larger vertex numbers tend to require slightly higher stretch-cost

for optimal performance. The curves in Figure 13 have been computed using for each sample

number the stretch-cost which obtained the best performance.

3.8 Influence of curvature

In section 2.2 we have argued that tangent angles are more suitable than curvatures as shape

descriptor. In this section, we support this claim by an experimental evaluation. The detection

experiment was run several times, using the following descriptors: only tangent angles, only
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Figure 13: Detection performance with varying number of sampled contour points.

curvatures, an unweighted sum of tangent angle differences and curvature differences, and a

weighted linear combination with weights wtang : wcurv = 4 : 1.

Results are shown in Figure 14, and in Table 2. Tangent angles clearly outperform curva-

tures. When combined together with equal weights, the performance is still significantly lower

than that of tangents alone, and the shape of the curve seems to indicate that adding curvatures

only swamps the discriminative qualities of tangent angles: the two curves are roughly parallel

over almost the whole range of thresholds, suggesting that adding curvature to the descriptor

causes the algorithm to miss some correct detections, without reducing the amount of false pos-

itives. When combined such that tangent angles weigh 4 times more than curvature, the results

are very similar to those obtained with tangent angles alone. Mostly, tangents alone are still

slightly better, except for the hat class, for which the weighted combination performs best at

some thresholds. With the little evidence we have at present, it is not possible to decide, whether

curvature really improves the performance for less pronounced and more ambiguous shapes like

the hat, or whether the effect is due to some unrecognized bias in the data set.

Figure 14: Detection performance for different combinations of tangent angle and curvature.

4 Discussion and Conclusion

We have revisited the problem of recognition and detection of object classes by their global

shape. A probabilistic measure of shape similarity has been introduced, which can be efficiently

computed with dynamic programming. The similarity measure has been integrated in a discrete
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wtang wcurv Swan Hat Starfish Apple Avg.

0.2 FPPI 1.0 0.0 96 87 95 88 91

0.8 0.2 94 87 91 88 90

0.5 0.5 92 75 87 82 84

0.0 1.0 62 31 43 48 46

0.4 FPPI 1.0 0.0 98 87 98 89 93

0.8 0.2 96 87 96 88 92

0.5 0.5 96 81 93 84 88

0.0 1.0 69 35 54 52 52

Table 2: Comparison of detection rates for different combinations of tangent angle and curvature.

optimization framework based on merging super-pixels, in order to detect objects, which have

high similarity with a template shape. Using only a single shape template per class, the method

is robust to scaling, rotation, and some non-linear elastic deformation. In a detailed experimental

evaluation, it has been shown to outperform previous methods, and has achieved a detection

rate of 91% at 0.2 false positives per image for a challenging real-world data set. Somewhat

surprisingly, it has been found that even if the object contour is not accurately recovered, robust

global matching can often detect the object, because its characteristic parts (such as the neck and

head of a swan) are still accurate.

Processing time depends on the image size, and on the number of super-pixels, which in

turn depends on the image content. With our current MatLab/C implementation, the complete

detection process for a new image takes on average 16 seconds for the swans (average image size

≈ 480× 320 pixels), and 36 seconds for the applelogos (average size ≈ 640× 480 pixels).

The main limitation of the presented method is the inherent inability of global methods to

deal with significant occlusions. In this context the question arises, how global shape as a cue

fits into a more general approach to object detection. Naturally we do not claim that global

shape should replace other object descriptions, but we do believe that it has an important role

for recognition and detection. Given the varying properties of different object classes, a generic

object detection/recognition system will have to combine global boundary shape, local shape of

typical parts, and local as well as global appearance (including color), and context. This will

require weights for the different cues, depending both on the object class (for example contour

and context are strong cues for hats, but appearance is more important for faces) and on the
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environment conditions (for example the usefulness of color depends on the lighting).

Another natural limitation is that the method cannot deal with extreme viewpoint changes (al-

though rotation and elastic deformation do give it some robustness). This difficulty is shared by

other 2D recognition methods, and can be overcome by modeling an object class by a collection

of 2D models for different viewpoints, e.g. [35]. Note however that for some viewpoints, shape

may not be a strong cue (for example, a hat seen from above appears as an unspecific blob).
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