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Abstract

Background maintenance is a prerequisite for many video processing tasks. The
mixture-of-Gaussian (MOG) model is an elegant way to formulate an adaptive sta-
tistical description of the background. In this work we incorporate several improve-
ments developed for other background maintenance methods into the MOG model
and show that, when properly implemented, the model is competitive with more re-
cent methods. Secondly, most background maintenance algorithms regard the pixels
in an image as independent and disregard the fundamental concept of smoothness.
We propose to use a Markov random field to cleanly model smoothness of the fore-
ground and background. Experimental results on the Wallflower benchmark show
that our algorithm outperforms other background maintenance methods by more
than 50%.
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1 Introduction

A basic requirement for video processing tasks with static cameras, such
as surveillance and object tracking, is to segment the interesting objects in
the observed scene from the permanently present background. To this end,
a model is estimated which describes the background, and those parts of a
frame which do not fit the model within a certain tolerance are labeled as
foreground. What may seem a trivial task at first glance turned out to be
difficult, because the background dynamically changes over time. The back-
ground model must be able to adapt to these changes. Toyama et al. have
termed the task “background maintenance” to point out the dynamic aspect
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of keeping the model up to date, and have presented a taxonomy of possible
difficulties to be encountered [1]. These include gradual and sudden illumina-
tion changes, shadows, vacillating background, foreground objects which share
the characteristics of the background, foreground objects which remain static
and must be merged into the background model, and the situation where no
training images without foreground objects are available. Examples for these
difficulties can be found in the test sequences in section 4 1 .

1.1 Related work

The last decade has produced a wealth of literature about background
maintenance, which can be broadly classified into two main approaches. The
first class, which we will call non-predictive methods, recovers a probability
density function (pdf ) of the observations at each pixel, and classifies pixels as
foreground, which do not match the density function. Nakai has approximated
the pdf by the histogram [4]. Wren et al. use a single Gaussian distribution [5],
Stauffer and Grimson a mixture of Gaussians [6]. Elgammal et al. estimate
non-parametric probability distributions from the data with kernel density
methods [7]. They have also introduced normalized chromaticity instead of
(R, G,B)-colorspace to remove shadows. Mittal and Paragios also use kernel
density estimation, but base their background model not only on image inten-
sities, but also optical flow [8]. While this certainly adds valuable information,
it depends on optical flow estimation, which in itself is a difficult problem.

A few methods do not work on single pixels: Kottow et al. compress the
background model to a set of codebook vectors [2], while Matsuyama et al. use
a simple mean image as background model, but work on windows rather than
pixels, and uses normalized cross-correlation instead of the intensity difference
to measure how well two regions match [9].

A second class of methods uses prediction rather than estimation of the
density to predict the pixel value, and classifies pixels as foreground, which
do not match the prediction. Linear prediction is the basis of the method by
Toyama et al. [1]. That paper also introduced the notion that background
maintenance has to take into account different spatial scales: the initial result
is improved using information at region-level for hole-filling, and at frame-
level by maintaining several background models and switching between them,
such that the portion of the image labeled as foreground does not become too

1 The Wallflower benchmark results have served as a reference in background mod-
eling, and other authors have used them for comparisons [2, 3] because they
provide a cleverly composed set of problems as well as the most comprehensive
comparison of different algorithms. However, the numerical values in the original
publication are incorrect. The experiments section also reproduces the corrected
results obtained for other background modeling methods on the same data, in
order to provide correct figures for future reference.
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large. Prediction has also been performed with a Kalman filter [10], through
projection onto a PCA-basis [11], and with an autoregressive model [12].

The methods mentioned so far learn a background model and assign pixels
which do not fit the model to the foreground. Some authors have proposed to
also learn a distribution of the foreground, which is useful for settings, where
the type of foreground objects is restricted, because then the statistics of the
foreground over time also conveys useful information. Both Friedmann and
Russell [13] and Ritscher et al. [14] consider the case of detecting and tracking
cars, and model cars, road, and shadows as states of a hidden Markov model
(HMM).

1.2 In defense of the MOG algorithm

An simple, yet powerful, statistical model, which is able to deal with many
of the mentioned difficulties, is the mixture-of-Gaussian (MOG) model intro-
duced by Stauffer and Grimson [6]. It describes the values of each background
pixel throughout the sequence statistically with a mixture of Gaussian dis-
tributions. Since several Gaussians are used, it correctly models multi-modal
distributions due to periodic changes (e.g., a flag in the wind or a flickering
light source), and since the parameters of the Gaussians are continually up-
dated, it is able to adjust to changing illumination, and to gradually learn the
model, if the background is not entirely visible in the beginning. On the other
hand, the use of simple parametric distributions makes the model computa-
tionally efficient and easy to configure.

A straight-forward implementation of the MOG method has been shown
to fail on several of the potential difficulties a video processing system could
meet [1]. One goal of this paper is to show that most of the encountered
problems can be avoided, if the improvements suggested for different other
background maintenance algorithms are incorporated into the MOG model,
too. If the method is implemented carefully, the results are at least as good
as those obtained with other state-of-the-art methods.

Firstly, we show that errors due to shadows and highlights can be avoided
by using chromaticity coordinates also in the MOG method. The second prob-
lem is more deep-rooted: the method uses a single learning rate to control two
distinct phenomena, the adaptation to changing illumination, and the fading
of static foreground objects into the background. Therefore, foreground objects
which stop moving are absorbed into the background too quickly. To overcome
this limitation, a delay is introduced into the learning process, which explicitly
states how long a static object should be remain in the foreground. Thirdly, we
show that if information can only be detected at frame-level, such as sudden
changes in global illumination, it can easily be fed back into the MOG model
via the learning rate.

In section 2, the mixture-of-Gaussian model is presented in a more for-
mal way, and the proposed modifications are discussed in more detail. In the
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experiments section, results obtained with the modified MOG method are
presented, and the results are compared with those of other methods, show-
ing that the enhanced MOG model is competitive with all other background
maintenance methods we are aware of.

1.3 Spatially smooth foreground segmentation

The second contribution of the paper does not concern the maintenance
of the background model itself, but the way it is used to label pixels as back-
ground or foreground. We present a Markov random field formulation of the
labeling task, which is expressive enough to capture the smoothness of the
visual world, but simple enough to be globally optimized in real-time. In a
probabilistic background model such as MOG, the normalized residual of each
pixel with respect to the background distribution is a continuous measure of
the likelihood that the pixel belongs to the background. Commonly, the likeli-
hood values are simply thresholded to obtain a binary labeling as foreground
or background. A notable exception is the work of Cristani et al. [15]. In their
approach, background maintenance is coupled with a semantic segmentation
of the scene in order to treat different semantic regions of the background
separately. However, this makes the low-level task of background maintenance
dependent on the high-level problem of scene understanding.

In contrast, we argue that even at a low level, the spatial distribution
within the field of background probabilities contains information. For a long
time, researchers have recognized that even prior to any semantic interpre-
tation the visual world is smooth, in the sense that an image is generated
by objects which are mapped to image regions with common properties [16].
This does not require semantic interpretation of the image – even if the ob-
jects are unknown, the world is a priori more likely to generate a smooth
foreground/background pattern, rather than a random dot pattern (see Fig-
ure 1). To make full use of the estimated likelihoods and add a smoothness
prior, we cast the foreground/background segmentation problem as a label-
ing problem on a first-order Markov random field (MRF), and show how the
optimal configuration of the field can be efficiently found.

The approach of Paragios and Ramesh [17] is probably the most similar in
spirit to the one presented here. They also enforce smoothness with a Markov
random field, and combine intensity and normalized color (as advocated in
this paper), conventional (R,G,B) color, and the output of an edge detector,
to obtain a complicated energy functional. The method uses a large amount of
information, but has the drawback that the resulting optimization problem is
very complex. Only a local minimum of undetermined goodness is found. The
method has been developed for a specific environment (subway monitoring),
and a relatively large number of parameters has to be adjusted empirically to
the application.

Section 3 describes in detail, how the output of the MOG-method at pixel
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(a) (b)

Fig. 1. Smoothness of foreground segmentation as prior belief. Random samples
from the posterior distribution of segmentations (a) without smoothness prior, and
(b) with smoothness prior. The foreground/background probabilities of the pixels
are uniformly distributed, there is no underlying semantics. Still the examples in
(b) are visually more realistic foreground patterns.

level is combined with a Markov random field to model spatial coherence, and
a method for efficient global optimization of the posterior probability is given.
In section 4, results on several video sequences are presented, including the
Wallflower benchmark. The results show that the proposed combination of the
MOG model with a smoothness prior outperforms all other tested methods
by more than a factor of 2.

2 The Mixture-of-Gaussian Model

2.1 Principle

The intuition behind the MOG model is the following: the intensities x
of a given pixel form a time series, which can be represented as the mixture
of a small number of Gaussians. Let the maximum number of Gaussians for
a pixel be K (in our implementation set to K = 5). The probability that a
pixel assumes a value x at a certain time t is then given by [6]

P (xt) =
K∑

i=1

wi,t√
(2π)n|Si,t|

e−
1
2
(xt−mi,t)

TS−1
i,t (xt−mi,t) (1)

where mi is the mean of the ith Gaussian, Si is its covariance matrix, and wi is
its weight (the portion of data it accounts for), all at time t. For computational
reasons, the channels of the image are assumed to be independent, so that
Sk = diag(s2

k). To determine how many of the K Gaussians are needed for a
pixel, the Gaussians are sorted by wk

mean(sk)
, meaning that distributions based

on a lot of evidence and distributions with low uncertainty come first. Only
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the first B distributions are chosen to represent the background, where

B = arg min
b

(
b∑

k=1

wk > T

)
(2)

The value T determines the minimum fraction of the recent data at location
x, which should contribute to the background model. If the background distri-
bution is complicated, a larger value is needed to ensure enough Gaussians to
approximate it. Our implementation uses T = 0.9 – this retains several (typi-
cally 3-5) Gaussians for unstable pixels and allows for multi-modal background
distributions, so that the algorithm is able to deal with periodic changes such
as flickering lights or waving trees in the background.

The parameters of the model are estimated in an initial training phase
and then continually updated as new data is observed. If the new pixel value
xt belongs to the ith distribution, the parameters are updated to

mi,t = (1− α)mi,t−1 + αxt

s2
i,t = (1− α)s2

i,t−1 + α(xt −mi,t)
T(xt −mi,t)

(3)

Here, α is the learning rate, which determines, how fast the parameters are
allowed to change. The weights are updated to

wk,t = (1− α)wk,t−1 + αUk,t , Uk,t =

1 . . . if i = k

0 . . . else
(4)

If a value does not match any of the distributions, the weakest Gaussian is
discarded and a new one is instantiated with low weight and high standard
deviation. Since new data gradually replaces older data in the background
model, the algorithm can deal with gradual changes of the background, such
as the ones typically encountered with natural light.

2.2 Implementation Issues

After its appearance in the literature, the MOG model has been criticized
by proponents of other background models, based on failure in a number of
experiments. In this section we will argue that the MOG model performs at
least as well as other state-of-the-art methods, if it is carefully implemented.
A quantitative comparison is presented in section 4.

A frequent problem of background modeling methods is that cast shad-
ows and moving highlights are incorrectly labeled as foreground, because they
induce a sudden change of brightness. The common assumption to deal with
these situations is that a change in illumination intensity alters only the light-
ness, but not the color of the region [18]. To suppress the influence of the
lightness, several background modeling methods use normalized chromatic-
ity coordinates,e.g. [7, 8, 17]. The normalized chromaticity values (r, g, b) are
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defined by 
r

g

b

 =
1

R + G + B


R

G

B

 (5)

where two of the three values are sufficient, because the vector is of unit length.
As a third coordinate, the intensity I = (R + G + B) is used, which otherwise
would be lost, and all three color coordinates are rescaled to [0 . . . 255]. In the
new colorspace (r, g, I) color and intensity have been separated, and a shadow
or highlight is expected to leave the r- and g-components unchanged and alter
only the intensity. In any environment with a diffuse lighting component or
multiple light sources, a shadow will only be able to occlude a certain portion
of the light (and similarly a highlight can only add a certain amount of light),
so the change in intensity is expected to stay within a certain range. If we
call the previous intensity of a pixel Ib, and the current intensity It, then we
may formulate this observation as β ≤ It/Ib ≤ γ. Within that range, the
distribution is not Gaussian. Translated to the MOG model, where we have
to deal with multiple modes, and the expectation of the previous intensity
is the mean mIi, we get the condition β ≤ It/mIi ≤ γ. Empirically, the
intensity change due to shadows and highlights is at most 50%, so we use
β = 0.6, γ = 1.5. The effect of using (r, g, I) instead of (R,G,B) colorspace is
illustrated in Figure 2.

Another issue when using the MOG model is that the distribution of the
gray-values is at best approximately Gaussian, so that the standard deviations
s may be estimated incorrectly. On one hand, the sensor accuracy is limited,
so extremely small standard deviations do not make sense. On the other hand,
each Gaussian represents only one mode of the distribution, so s should only
account for the variation within that mode. It is a matter of good engineering
to bound s to reasonable values. In our implementation, we use 2 < sr,g < 15
(for 8-bit images).

Thirdly, there is a dilemma how to set the correct learning rate. If a low
α is chosen, the background model will take too long to adapt to illumination
changes, while a high α will quickly merge the objects of interest into the back-
ground when they stop or move slowly. The reason is that a single learning
rate is used to cover two different phenomena, namely the smooth variation
of the background process over time, and the transition from foreground to
background. This transition is a discrete process depending on the user’s re-
quirements (“after how many frames shall a static foreground object become
background?”). A straight-forward way to separate the two phenomena and
solve the problem is to stop learning the pixel process, when a pixel becomes
foreground. After the pixel has continuously remained in the foreground for
a given number of frames, background learning with equations (3) and (4)
continues, and the pixel will fade into the background with the speed given
by the learning rate, if it remains static.
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(a) (b) (c)

Fig. 2. Colorspace transformation for shadow removal. (a) Image without and with
foreground object. (b) Change detection – top: using (R, G,B), bottom: using
(r, g, I). In the top image one can clearly see the cast shadows from the two principal
light sources.(c) Difference profile for the marked image column – top: green channel
G, center: intensity channel I, bottom: normalized green channel g. In (r, g, I) the
intensity and the chromaticity have been separated.

3 Adding Smoothness

In the standard MOG model, each pixel is considered independent of the
others, and a binary decision is taken: if the pixel does not match any of the
background distributions, it is labeled as foreground. This contradicts the well-
known fact that the world consists of spatially consistent entities, often called
the smoothness assumption. In fact, standard background modeling algorithms
such as the original MOG-method or Wallflower use an ad-hoc version of the
smoothness assumption: they clean the foreground/background segmentation
by deleting small foreground clusters using connected components.

We propose a more principled way to incorporate a smoothness prior:
rather than simple thresholding, a continuous background probability value is
retained for each pixel, and the foreground segmentation is treated as a label-
ing problem on a first-order Markov random field. Maximizing the posterior
probability then results in a smooth, and more correct, foreground/background
segmentation.

3.1 Markov Random Fields

Markov random fields (MRF) are a probabilistic way of expressing spa-
tially varying priors, in particular smoothness. They were introduced into
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computer vision by Geman and Geman [19], and have been applied to a wide
variety of problems such as image restoration [20], stereo matching [21] and
optical flow estimation [22]. A Markov random field consists of a set of sites
{x1 . . . xn} and a neighborhood system {N1 . . . Nn}, so that Ni is the set of
sites, which are neighbors of site xi. Each site contains a random variable Ui,
which can take different values ui from a set of labels {l1 . . . lk}. Any labeling
U = {U1 = u1 . . . Un = un} is a realization of the field. The field is a MRF,
if and only if each random variable Ui depends only on the site xi and its
neighbors xj ∈ Ni. Each combination of neighbors in a neighborhood system
is called a clique Cij, and the prior probability of a certain realization of a
clique is e−Vij , where Vij is called the clique potential. The basis of practical
MRF modeling is the Hammersley-Clifford Theorem, which states that the
probability of a realization of the field is related to the sum over all clique
potentials via P (U) ∝ exp(−∑Vij(U)). A standard reference for MRFs in
computer vision is [23].

If only cliques of 1 or 2 sites are used, the field is called a first-order MRF,
and

P (U) ∝ exp

−∑
pi

∑
pj∈Ni

Vij(ui, uj)

 (6)

The 1-site clique for each xi is just the site itself, with likelihood e−Wi(ui). Each
2-pixel clique consists of xi and one of its neighbors, and has the likelihood
e−Vij(ui,uj). Following Bayes’ theorem, the most likely configuration of the field
is the one which minimizes the posterior energy function

E(U) =
∑
xi

∑
xj∈Ni

Vij(ui, uj) +
∑
xi

Wi(ui) (7)

It remains to define the clique potentials Vij. If the goal is smoothness, and
the set of labels does not have an inherent ordering, a natural and simple
definition is the Potts model [21]

Vij =

dij if ui 6= uj

0 else
(8)

If two neighboring sites have the same label, the incurred cost is 0, if they have
different labels, the cost is some value dij, independent of what the labels ui

and uj are. The dij can be constant, or they can be some function of the sites
xi and xj.

3.2 Application to Background Modeling

In the following, we will convert the background modeling problem into
an MRF and show how to efficiently solve it. First, we have to define a back-
ground likelihood for each pixel. In the conventional MOG method, a pixel
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x = [xr, xg, xI]
T in the current frame is labeled as foreground, if it is too far

away from all Gaussians of the background, or, according to our discussion of
shadows in section 2.2, if the intensity difference is too large in all modes.

x → F if


(xri−mri)

2

s2
ri

+ (xgi−mgi)
2

s2
gi

> θ2 ∀ i ∈ {1..K}
or

xI

mIi
< β or xI

mIi
> γ ∀ i ∈ {1..K}

(9)

In other words: x matches the ith Gaussian, if its normalized distance from
the mean is below a threshold θ (to cover 99.5% of the inliers to a Gaussian,
θ = 2.81). The evidence that x belongs to the background B is the probability
that it belongs to the Gaussian, which it fits best, and only those Gaussians
are valid, for which the intensity difference is not too large.

It is easy to convert this condition into a likelihood. The cost for labeling a
pixel as foreground is constant, and shall be lower than the cost for labeling it
as background only if condition (9) does not hold. The negative log-likelihood
(the cost) of x in the ith Gaussian is

Wi(x) =


(xr−mri)

2

s2
ri

+ (xg−mgi)
2

s2
gi

if β ≤ xI

mIi
≤ γ

aθ2 else
(10)

where a is a constant >1, stating that the background cost is higher than
the foreground cost, if the intensity difference is large. Empirically, a = 2.5
performs satisfactory for all image sequences we have tested. Among the K
Gaussians, the strongest evidence that x belongs to the background is the
one with the lowest cost. If the modes are well separated, the likelihood of
belonging to any other Gaussian is small, hence the cost of assigning x to the
background/foreground is

W (x ∈ B) = arg min
i

(Wi(x))

W (x ∈ F) = θ2
(11)

To model the neighborhood, we use the simplest possible definition: a pixel is
connected to each neighbor in its 4-neighborhood, and the clique potential is a
constant, which determines the amount of smoothing. We write the constant
Vij = bθ2, so that the cost for large intensity differences in equation (10) and
the clique potential are on the same scale. Useful values are 1 ≤ b ≤ 4.

The presented case is a particularly simple MRF: there are only two labels
(the so-called Ising model), and the connectivity graph is planar. For this
special configuration, the global maximum of the posterior can be found in an
efficient way. Maximizing the posterior is equivalent to minimizing the energy
functional (7) over the space of realizations of the MRF. In general, this is a
combinatorial problem, which is NP-hard for >2 labels, but it can be exactly
solved in low polynomial time for only 2 labels and planar connectivity with
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the min-cut/max-flow algorithm [24]: the MRF is converted into a graph,
where the sites xi are the nodes, and the cliques Cij are the arcs joining the
nodes xi and xj, with cost Vij. Furthermore the graph is augmented with
two terminal nodes for the two labels, which are connected to every node
of the graph with an arc representing the corresponding likelihood Wi (plus
a constant which is larger than the maximum possible clique potential for
one node). The minimum cut on this graph partitions it into two sub-graphs,
such that each node is only connected to one terminal (label). The method is
illustrated in Figure 3.

T1

T2

(a)

T1

T2

(b)

Fig. 3. Labeling through graph cuts. (a) Graph representing a MRF before seg-
mentation. Line width denotes edge weight. (b) The minimum cut to obtain two
unconnected subgraphs corresponds to the optimal labeling.

The min-cut algorithm is very efficient: we have tested it on several video
sequences with image size 160×120 pixels (see section 4 for results). On a
2 GHz desktop PC, constructing the graph, solving the optimization, and
clearing the memory takes on average 14 milliseconds, and thus does not impair
the real-time capabilities of the MOG method.

4 Experimental Results

The algorithm has been tested with the Wallflower benchmark. This data
set has been used by Toyama et al. to assess a large number of background
maintenance methods, including their own algorithm Wallflower. It has also
been used by Kottow et al. to assess their method [2]. The data set consists of
7 video sequences of resolution 160×120 pixels, each representing a different
type of difficulty that a background modeling system may meet in practice.
These difficulties are
Moved Object (MO): A person enters a room, makes a phone call, and
leaves. The telephone and chair are left in a different position.
Time of Day (TOD): The light in a room gradually changes from dark to
bright. Then a person enters the room and sits down.
Light Switch (LS): A room scene begins with light on. A person enter the
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room and turns off the light for a longer period. Later, a person walks into
the room, switches on the light, and moves the chair.
Waving Trees (WT): A tree is swaying in the background, and a person
walks in front of it.
Camouflage (C): A person enters the scene and occludes a monitor with
rolling interference bars. The bars include colors similar to the person’s cloth-
ing.
Bootstrapping (B): An image sequence from a busy cafeteria, all frames
contain foreground objects.
Foreground Aperture (FA): A person with uniformly colored shirt wakes
up and begins to move in the foreground.

For the last used frame of each sequence, manually segmented ground truth
is available to enable a quantitative comparison. Table 1 shows the number of
foreground pixels labeled as background (false negatives - FN), the number of
background pixels labeled as foreground (false positives - FP), and the total
percentage of wrongly labeled pixels FN+FP

160×120
. Furthermore, the total number

and percentage of wrongly labeled pixels over all 7 difficulties is given. In
their algorithm, Toyama et al. have used a long-term memory to maintain
multiple background models and switch between them to cope with the sud-
den switching on of the light in the Light Switch sequence. We agree with
their reasoning that information at the frame level, rather than pixel level, is
required to detect this type of change. The MOG model provides an elegant
way to deal with such situations: if a global change occurs, and almost the en-
tire image is labeled as foreground, we increase the learning rate to boost the
adaptation to the new global conditions. However, the authors of Wallflower
do not seem to have included the information at frame-level in their imple-
mentations of other tested algorithms. This distorts the comparison, hence
we also display the total results without the Light Switch sequence (column
TOT*).

Here, we have presented two improvements to background modeling. First,
we have shown that the original MOG-method is a valid and competitive
algorithm, if implemented in the right colorspace and with the same care as
other background modeling methods, and secondly we have applied the MRF
concept as a sound way to incorporate spatial smoothness in low-level image
processing, and have shown that in the special case of background modeling
MRFs need not be computationally expensive. To isolate the contribution of
each of these two parts, we present the results of our MOG algorithm using the
conventional connected component method for cleaning up the segmentation,
and the improved results using smoothing. We did not tune our methods
towards the single sequences. In the MOG part, the only parameter change
was the (automatic) increase of the learning rate from α = 0.001 to α = 0.1 in
case of a sudden illumination change, as explained above. In the MRF part,
the threshold θ = 2.81 was used (covering 99.5% of the inliers to a Gaussian),
and the two required parameters a = 3.5 and b = 2.5 were also kept constant.
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For some practical applications it may be possible to exclude certain scenarios
and empirically find better parameter settings. We have found that the “all-
purpose” values given above are quite robust, and that the overall performance
only increases by ≈600 pixels (15%), even if the optimal parameter values
are chosen for each sequence separately (which of course is improper tuning
towards a specific data set).

Figure 4 depicts the segmentation results for the algorithms, which have
been most successful on the Wallflower sequence. A quantitative comparison
is given in Table 1. The comparison shows corrected results: in the original
paper [1], the column for the total error is wrong (the Foreground Aperture
results were accidentally not added, although the correct results are displayed
in a chart). We reproduce the corrected results for all algorithms as a reference
for future publications.

The comparison should be taken with a grain of salt: choosing an algo-
rithm will depend on which difficulties are expected in a given application.
Note however that our method yields the best result for all sequences. Fur-
thermore, the actual implementation must take into account the nature of the
application. For example, in a high-security setting, one will seek to minimize
the number of false negatives and rather accept more false alarms. Any of
the given algorithms in some form contains a parameter, which governs its
sensitivity (up to which distance from the expected value a pixel is assigned
to the background), and can be tuned accordingly.

Two more results are shown in Figure 5 and 6. The first sequence shows a
car passing in front of a background with swaying trees, recorded under natural
outdoor lighting. The sequence was processed with the described algorithm.
Both contributions of this paper were tested separately: first, the improved
MOG algorithm was applied with the conventional connected components
filtering, then it was applied with MRF smoothing. The results show that the
MOG algorithm already achieves a quite good segmentation of the foreground
object, and that MRF smoothing further improves the result and achieves a
nearly perfect segmentation.

The second sequence is more difficult. It shows a person walking in front
of a fountain, again filmed outdoors. Parts of the person’s clothing are similar
in color to the water and to the stone base of the fountain. Again, the results
for the MOG algorithm alone as well as for the MOG algorithm with MRF
smoothing are displayed. Some errors occur in regions, where the foreground
color is similar to the background, but a large portion of the errors is repaired
by smoothing.

5 Conclusions

An improved version of the mixture-of-Gaussian method for background
maintenance has been presented, which overcomes a number of problems of
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Fig. 4. Foreground/background segmentation for Wallflower benchmark. Top row:
the image at which the processing was stopped and the results were evaluated. 2nd

row: manually segmented ground truth (from [1]). 3rd row: Wallflower (from [1]).
4th row: Tracey LAB LP (from [2]). 5th row: our MOG-implementation. Bottom
row: Our MOG algorithm with MRF smoothing.

Fig. 5. Foreground/background segmentation for “car” video. Top row: 6 frames of
the sequence. 2nd row: Foreground segmentation with improved MOG algorithm.
Bottom row: Foreground segmentation obtained with MOG algorithm and MRF
smoothing.

the original algorithm. (r, g, I)-colorspace is used to cope with shadows and
highlights, a frame-level component has been added to detect global illumi-
nation changes which cannot be dealt with at pixel level, and a short-term
memory has been added to separate the adaptation to lighting changes from
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Algorithm ERR MO TOD LS WT C B FA TOT TOT*

Frame FN 0 1165 2479 3509 9900 1881 3884
difference† FP 0 193 86 3280 170 294 470 27311 24746

% 0.0 7.1 13.4 35.4 52.5 11.3 22.7 20.3 21.5

Mean+ FN 0 873 1116 17 194 415 2210
threshold† FP 0 1720 15116 3268 1638 2821 608 29996 13764

% 0.0 13.5 84.5 17.1 9.5 16.9 14.7 22.3 12.0

Mean+ FN 0 949 1857 3110 4101 2215 3464
covariance† FP 0 535 15123 357 2040 92 1290 35133 18153

% 0.0 7.7 88.4 18.1 32.0 12.0 24.8 26.1 15.8

MOG FN 0 1008 1633 1323 398 1874 2442
(original)† FP 0 20 14169 341 3098 217 530 27053 11251

% 0.0 5.4 82.3 8.7 18.2 10.9 15.5 20.1 9.8

Block FN 0 1030 883 3323 6103 2638 1172
correlation† FP 1200 135 2919 448 567 35 1230 21683 17881

% 6.3 6.1 19.8 19.6 34.7 13.9 12.5 16.1 15.5

Temporal FN 0 1151 752 2483 1965 2428 2049
derivative† FP 1563 11842 15331 259 3266 217 2861 46167 30084

% 8.1 67.7 83.8 14.3 27.2 13.8 25.6 34.4 26.1

Bayesian FN 0 1018 2380 629 1538 2143 2511
decision† FP 0 562 13439 334 2130 2764 1974 31422 15603

% 0.0 8.2 82.4 5.0 19.1 25.6 23.4 23.4 13.5

Eigen- FN 0 879 962 1027 350 304 2441
background† FP 1065 16 362 2057 1548 6129 537 17677 16353

% 5.6 4.7 6.9 16.1 9.9 33.5 15.5 13.2 14.2

Linear FN 0 961 1585 931 1119 2025 2419
Prediction† FP 0 25 13576 933 2439 365 649 27027 11866

% 0.0 5.1 79.0 9.7 18.5 12.4 16.0 20.1 10.3

Wallflower† FN 0 961 947 877 229 2025 320
FP 0 25 375 1999 2706 365 649 11478 10156
% 0.0 5.1 6.9 15.0 15.3 12.5 5.1 8.5 8.8

Tracey FN 0 772 1965 191 1998 1974 2403 12035 8046
Lab LP‡ FP 1 54 2024 136 69 92 356

% 0.0 4.3 20.8 1.7 10.8 10.8 14.4 9.0 7.0

this paper FN 0 203 1148 43 110 1159 1023 7340 5628
(only MOG) FP 19 1648 564 278 468 143 534

% 0.1 9.6 8.9 1.7 3.0 6.8 8.1 5.5 4.9

this paper FN 0 47 204 15 16 1060 34 3808 3058
(smoothed) FP 0 402 546 311 467 102 604

% 0.0 2.3 3.9 1.7 2.5 6.1 3.3 2.8 2.7

Table 1
Experimental results on Wallflower benchmark. † were reported in [1], ‡ were re-
ported in [2]. See text for explanation.

the merging of static foreground objects into the background.

The main contribution of the paper is that the smoothness assumption
for foreground/background segmentation has been treated in a principled, but
computationally tractable way, and it has been demonstrated that a combina-
tion of the mixture-of-Gaussian algorithm with Markov random field modeling
is efficient and outperforms other methods, which neglect smoothness or in-
corporate it in an ad-hoc way. We do not challenge the principle formulated
by Toyama et al. that semantic segmentation should not be handled by a
low-level module like background maintenance [1]. Rather, we claim that spa-
tial smoothness is a guiding principle already at a low level, before semantic
interpretation.
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Fig. 6. Foreground/background segmentation for “fountain” video. Top row: 6
frames of the sequence. 2nd row: Foreground segmentation with improved MOG
algorithm. Bottom row: Foreground segmentation obtained with MOG algorithm
and MRF smoothing.

Both parts have been separately evaluated on the Wallflower benchmark
data set and have obtained lower error rates than other state-of-the-art algo-
rithms.
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