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Abstract— Computer architectures have until recently been
dominated by the von Neumann style architectures. The
improvement in re-configurable hardware with the
development of larger Field Programmable Gate Arrays
(FPGAs) has allowed other styles of architectures to be
implemented. One of these styles of architecture is data-flow.
The data-flow architecture implemented on an FPGA, as
described here, is a significant subset of the CSIRAC II data-
flow architecture. The performance of this architecture was
compared with a von Neumann style control-flow
architecture, and comparable results were obtained with
noticeable performance benefits with some programs.

Index Terms— Computer architecture, data flow

computing, field programmable gate arrays

I. INTRODUCTION

HE study of computer architectures has been largely
dominated by the von Neumann style architectures,
which even von Neumann considered as being interim
pending more advanced implementation technologies.
However at the time it was proposed in the 1940’s [1] the
von Neumann architecture was the best solution for the
available hardware. Despite the improvements in technology
allowing other styles of architecture to be implemented,
industry’s conservative approach has meant that very few of
these have been implemented in practice. One of these styles
of architectures developed by research organisations was the
data-flow architecture. Some of these designs were
Monsoon, Manchester Data-flow Machine, and CSIRAC 1T
[2]. With the recent advances in re-configurable hardware,
caused by the development of large Field Programmable
Gate Arrays (FPGAs), the implementation of these more
advanced architectures has become viable.

I. BACKGROUND

A. How do data-flow architectures work

Data-flow architectures only execute instructions when all
of the required data is available. This is in contrast to
control-flow architectures, based on the von Neumann
design, where instructions are executed independent of
whether the data is available. The advantage with data-flow
is that all of the dependencies commonly existent in control-
flow architectures are avoided as only instructions
containing all their data are executed.
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The programs executed by the data-flow machine are
‘directed graph(s) consisting of named nodes, which
represent instructions, and arcs, which represent data
dependencies among nodes. Operands are propagated along
the arcs in the form of data packets, called tokens.” [2] These
directed graphs are normally written in a higher level
language and compiled into a set of node descriptions and
input tokens to be read into the processor. When the
processor is executing the program, the tokens are fired into
the processor and then executed by the Execution Unit. This
directed graph approach allows the nodes to be executed in
any order, thus improving performance and in some cases
simplifying programs that may be extremely complicated to
represent as a list of instructions.

A. Different types of data-flow architectures

Data-flow architecture can be split into a few groups:
Static (Dennis), Static Queued, Dynamic, and Hybrid. Static
architectures are the most restrictive as ‘An enabled node is
fired if there is no token on any of its output arcs’ [1]. This
is a problem as more than one token could appear on an arc,
thus control tokens are used to block the execution until the
output arc is available. Static Queued architecture permit
tokens to be queued on arcs, thus eliminating the
requirement of an interconnecting network for the control
tokens. Dynamic architectures also avoid the problem by
altering the enabling and firing rule to be ‘A node is enabled
and fired as soon as tokens with identical tags are present on
all input arcs’ [1]. These tags contain information about the
destinations and a colour field to separate tokens on the
same arc. In a normal application this could cause the
number of tags to increase rapidly, thus a hybrid of Static
Queued and Dynamic was proposed. Hybrid architecture
uses static queuing for the inner loops while the dynamic
loop unrolling is used for the outer loops, thus obtaining
the benefits of a dynamic architecture while reducing the
number of different tags [2].

A. The architecture being implemented

The CSIRAC II data-flow architecture was a Hybrid
created in 1978 by Egan and was later implemented into
hardware in the early 80’s [1]. Some of the CSIRAC 1II
architecture features include: a self loading Node Store,
buffers on both the Matching Store and Execution Unit,
most instructions found in a conventional processor and
some extras, external network, 128-bit tokens, colours and
ordered execution [2]. CSIRAC II allows the nodes to be
loaded through the Input List and also allows them to be
changed while the processor is still executing. The external
network allows the architecture to operate with multiple
processors while also allowing input and output to
peripheral devices to be separate from the processors
executing the program. The tokens used in this architecture
are 128-bit long. These tokens store information about
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which processor the token is going to be executed on, the
ALU to be used on that processor, a colour field allowing
loop unrolling and recursion, the type of node the token is
for, and input side of the node, data type and the data
required for that node.

Data-flow programs have two types of nodes, monadic
which have one input and dyadic which have two. These
types of tokens are not evenly fired into the processor, thus
there has to be some elasticity in the processor to allow for
these runs of monadic and failed dyadic tokens. CSIRAC 1I
accommodates this by having buffers before the Matching
Store and Execution Unit. Some other architectures like the
Manchester Data-flow Machine created by researches led by
Watson and Gurd at Manchester University neglected this
elasticity causing their processor to continually stall while
the Matching Store collected tokens from the linked list [3].

I. DESIGN

The data-flow architecture being implemented for this
project was a subset of the CSIRAC II data-flow processor.
The processor was designed only to execute programs with
graphs of less than 125 nodes with only integer and bit
operations being available. The reason for this was to reduce
the amount of hardware required to implement it, thus
enabling it to fit onto the Altera Cyclone FPGA being used.
The basic structure of the processor can be seen in Figure 1.

External Network

Local Input
List List

Matching
Store
Execution
Unit

Distributor

Fig 1. Block diagram of the CSIRAC II processor architecture.
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The processor is split into six distinct sections: the Lists,
Bypass, Matching Store, Node Store, Execution Unit, and
Distributor. Because of this separation, each section was
implemented as stand-alone function blocks with
communication channels between them. The details of each
section are as explained in the following subsections.

A. Lists

The lists hold the node descriptions and tokens before
they enter the processing sections of the processor. There are
two lists: one is a Local List, and the other is the Input
List. The Local List is filled from the Distributor on that
processor whereas the Input List is filled from an external
source, which is normally another processor’s Distributor,
thus allowing the program and data to be entered into the
processor.

B. Bypass

The Bypass selects between the two lists with a bias to
the Local List, as filling this list will cause the processor to
stall. The Bypass then adds the function and literal from the
Node Store to the token, if required, before distributing the

token to either the Matching Store or the Execution Unit.
This causes dyadic tokens to pass through the Bypass,
which is not necessary, however it does simplify the logic
required in the Node Store to collect the function and literal.

C. Matching Store

The Matching Store is where tokens required for nodes
with multiple inputs are matched together. This is
accomplished by storing the tokens in an array indexed by
the element number. When a token with the same element
number is found it is sent to the Execution Unit Buffer with
the data from the matching token if it is the opposite input,
otherwise it is added to a Linked List connected to that
element number. As the new token is added to the end of
the Linked List, the order is preserved thus ensuring that the
correct set of input data for each node is found.

D. Node Store

The Node Store is where the information for each node is
recorded. The Node Store was split into two storage
sections, one containing the function and literal and the
other containing where the data is sent after executing the
node. The reason for splitting the Node Store is that
obtaining the function and literal when the tokens are being
manipulated, to insert them into Execution Unit Buffer,
reduces the delay before the Execution Unit can begin
execution while not affecting the size of the buffers required.
At the beginning of execution the Node Store contains no
information about the program being executed, thus all of
the node descriptions are entered through the Input List.
Thus the operations of the Node Store consist of three
sections: one for each of the storage sections to collect the
information and one to insert the node descriptions into the
Node Store.

E. Execution Unit

The Execution Unit uses an arithmetic logic unit (ALU)
that is the same as in common architectures with the only
difference being the reduced instruction set. The instruction
set has been reduced as the processor was designed to only
implement integers and a selection of the possible
instructions specified for the architecture in [4].

F. Distributor

The Distributor sends the newly created tokens to either
another processor, or to the Local List depending on the
distribution system being implemented.

G. The features of the subset being implemented

The subset of the CSIRAC II data-flow architecture
implemented has the following instructions: Add, Subtract,
Multiply, Shift Up, Shift Down, Equal to, Not Equal to,
Greater or Equal to, Pass if True, Pass if False, Switch,
Nop, and Replicate. These instructions can be either Bypass
or Normal nodes, where the type of nodes indicates the
number of inputs: Bypass has one input and Normal has
two. The data types available on the processor are 8-bit, 16-
bit and 32-bit integers, single bit, and node descriptions.
All of these data types are contained in single word tokens
except the node descriptions which in this implementation
were restricted to the Input List and Node Store. The other
restrictions are that nodes can have a maximum of two
destinations, only Bypass nodes can have literals, and there
is a maximum of 125 nodes in the directed graphs being
implemented on the architecture. The processor it self is a
single processor which accepts 128-bit input tokens and
outputs 32-bit values if the destination is an output node.
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H. Design considerations

The buffer and list sizes had to be carefully considered as
filling one of these could cause the processor to deadlock. In
this implementation the FPGA resources determined the
buffer and list sizes. For the buffers and lists using RAM,
the size was dependent on the smallest number of RAM
blocks required as there was a limitation on these blocks and
once a block was required there was no reason not fully
utilizing it. On the other hand the lists using an array were
restricted to the absolute minimum size to enable the
processor to fit on the FPGA. Even though the FPGA
resources dictated the size of the buffers and lists, the
comparative size required had to be considered. The Local
List was made the largest, as filling this list will cause the
processor to deadlock. Similarly the Execution Unit Buffer
size was obtained by the maximum influx possible in the
processor. The smallest in this implementation was the
Input List, as there was no external network this list only
contained triggering tokens, and a stall would not affect the
rest of the processor.

As the processor was the only implemented part of the
architecture, some of the data fields could be reduced while
others could be excluded. The excluded fields are colour,
process, and processor since the colours were not being
implemented, there was only one ALU and only one
processor. The data field was reduced to 32-bits since this
was the largest data type the processor was capable of
handling. The data type field was reduced to 4-bits so these
two fields fit neatly into the 36-bit words of the RAM
blocks, thus reducing the number of RAM blocks required
for the Linked List while still being large enough to hold all
of the data types. The node id and addresses to the Linked
List were reduced to their minimum size.

As there are two lists feeding the Bypass a selection has to
be made as to which list the next token will be taken from.
The main requirement is that the Local List never becomes
full, as this will deadlock the processor. Due to there being
no external network, the only tokens in the Input List will
be priming tokens thus the Local List will normally be
empty when the Input List contains tokens. Therefore tokens
were taken from the Local List unless the list was empty as
there was no benefit in complicating the design to ensure the
Input List never became full.

I. IMPLEMENTATION OF THE ARCHITECTURE

Handel-C was used to implement this architecture as it is
a higher-level language than VHDL, thus simplifying the
code. The architecture is split into five sections as described.
In addition to these sections there is a function to retrieve
the program, which is stored in external RAM, and load it
into the Input List, and a function to operate the display.

During the execution of this program, values can be
viewed on the LEDs located on the development board by
using the appropriate instruction. A delay section of code
was added to the design to stall the processor while the
value was being displayed.

Another feature of the processor is a memory led, which
indicates when one of the memory sections has become full
which will probably cause the processor to deadlock. The
cause of this in most cases is the Local List becoming full
due to excessive branching in the program, however
allowing un-matched tokens to build up in the Matching
Store has the same effect as the memory allocated for the
Linked List becomes full. These problems can be avoided
by writing the program so it does not excessively diverge
before converging and ensure that no one side of a dyadic

node enters the Matching Store excessively more often at
any particular point in the execution.

A. Design considerations

The major design consideration was whether to use RAM
or arrays. In general this decision was already made with the
size restriction the FPGA placed on the project. Thus the
majority of storage was placed in RAM, with a lesser
amount implemented using arrays and the program
executing on the chip stored in external RAM. The use of
external RAM was restricted to storing the program, which
would only be accessed once, thus avoiding the performance
degradation in the main section of the processor while
allowing the processor to fit on the chip.

Another consideration was how Handel-C implemented
some of its available features. A perfect example of this was
the default division as it required the entire FPGA and
reduced the maximum clock speed to 2MHz. Division was
excluded for the instruction set and replaced with shift
operations allowing the programmer to achieve the same
results using different operations. Channels are designed for
passing values between parallel sections of code using
handshaking. While this 1is wuseful in the correct
implementation, in many cases it was not practical to pass
data this way, thus for some sections the data was passed
using variables and signal.

A. Implementation restrictions

Due to the FPGA size limitations and desired performance
requirements the following restrictions were placed on the
processor.

The Linked List which stores the multiple tokens for a
particular node in the Matching Store was placed in on-chip
RAM, thus its size was limited to 256 locations which in
most cases would be adequate as the probability of having
more than three tokens for one node stored is extremely low.

The number of nodes allowed in the program was
restricted to 125. This allows small programs to be executed
on the processor, thus allowing the design to be tested while
not creating problems caused by allocating excessive
amounts of memory and therefore restricting the available
space on the FPGA required for implementing the rest of the
processor.

The instruction set and number of types were reduced. The

reason for doing this was to simplify the ALU being used in
the implementation as this part of the program could very
easily be obtained from a conventional processor which
implements a larger instructions set and more data types.
Thus a select few instructions were chosen to allow more of
the chip space to be dedicated to the data-flow sections of
the processor while still allowing suitable programs to be
written.
The branching factor for each node was restricted to two
destinations. Since the design is for a single processor,
which could be joined to other processors later by using
multiple FPGAs. Thus, having a larger branching factor
would only fill the Local List with tokens faster than they
can be removed causing the processor to deadlock. In a
multiple processor design these extra tokens would be
spread between the processors thus avoiding this problem.

A. On-chip specifications

The Quartus compilation results for the architecture on the
Altera Cyclone EP1C6T144C6 FPGA:

-- 5,260/ 5,980 (87%) LE’s

--19/20 M4K RAM

-- 62,090 / 92,160 (67%) bits of RAM

-- 50 MHz clock.
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Despite the fact that there were a limited number of M4K
RAM blocks only 19 were used, as altering the design to
increase the storage used required two RAM blocks. Most
RAM blocks were not fully utilized due to the way the
RAM was configured. Not all of the LEs available on the
FPGA were used, as increasing the percentage of used LEs
increases the interconnections on the FPGA, thus reducing
the clock speed. A larger FPGA would have reduced this
limitation on the clock speed while allowing sections of the
program to be written differently to obtain a higher clock
speed.

A. Problems encountered and solutions

Some of the problems encountered during this project were:

--Collecting the outputs from the Bypass and the
Matching Store and inserting them into the Execution Unit
Buffer. As it was decided to do this in one clock cycle
signals had to be used, with variables used for the control
logic. These variables had to be assigned in the previous
clock cycle which was possible, as knowing if something
will be sent is simpler than knowing what will be sent.

--The Node Store had a similar problem with obtaining
the function and argument, however the destinations could
use a channel as there was no control logic due to there only
being one input to chose from.

--Being able to stall the pipeline if the lists and buffers
were becoming full caused some problems with the signal
used in the pipeline stages. If the stages were stalled when
the list or buffer became full some of the information was
lost, however if the pipeline stages were fed Nop and
continued to run the processor operated correctly.

Timing of the hardware design was found to affect the
output with minor adjustments in the design causing tokens
to be gained or lost in different sections of the processor.
The cause of these problems was very difficult to locate as
the simulator in Handel-C was not affected by them and
there were very few debugging features added to the
implementation. Another possibility was some of the data
stored in the external ram was being corrupted depending on
the design being loaded onto the FPGA.

I. OPERATIONS

A. Compiling the test programs

To operate the processor the data-flow graphs had to be
compiled into machine code. This process was done in two
steps to allow the program to be checked between the steps.
The first step compiled a representation of the directed graph
into a list of node descriptions and tokens. Normally the
data-flow machine would execute this directly however due
to the restraints on the implementation a simple parser was
used to convert this into serial code.

A. Description of the test programs

There were two test programs implemented: a modeling of
a small heated 2-d mesh, and a filter. These programs were
executed on a control-flow processor as well as the data-flow
processor in order to obtain a performance comparison.

The mesh contained 9-cells heated from the top, cooled
from the bottom and insulated on the sides. This mesh is
continually heated until the center cell has a constant
temperature for a set number of iterations. This mesh
program should execute in approximately the same time for
the two architectures as the programs have a similar number
of instructions and the processors have the same clock

speed. Also the data-flow processor has the blocking node
primed to allow multiple iterations of the same value and
branch predictions is enabled on the control-flow
architecture. Taking these considerations into account the
data-flow processor should perform as well as the control-
flow processor. The reason for this is the mesh is very small
thus allowing the values to be stored in registers in the
control-flow processor, this alleviates the need to load and
store data from cache therefore avoiding most of the data
dependencies. Having the values in memory also reduces the
number of instructions required to update the old values,
thus the advantage of the data-flow processor keeping the
values for each iteration separate will not be apparent. The
control instructions to ensure the processors do the same
number of iterations will only be slightly smaller in the
data-flow design and the advantage of the data-flow
processor continuing to execute nodes while the branching is
being evaluated will probably not be obvious due to the
branch prediction being used in the control-flow processor.

The filter was an integrator consisting of an add node and
a feedback path consisting of a shift down node. This graph
was fed with a list of tokens generating a step response. As
a directed graph this program only contained two
instructions compared to the six instructions for the control-
flow implementation, thus the data-flow program was
assured of executing faster. The data-flow machine had so
few instructions as there was no branching required because
the output would be stopped when there was no input,
instead of checking if there is no input then breaking out of
the loop.

A. Performance comparison of the two architectures

With the mesh the data-flow architecture was found to
perform slightly slower than the control-flow architecture
taking 125 clock cycles compared to 77 per iteration. The
main reasons for this was that all of the advantages a data-
flow architecture has over the control-flow architecture were
not tested in this program. Also about 50% of the nodes in
the directed graph were dyadic and as this implementation of
the CSIRAC II architecture sends all of the tokens through
the Bypass, the Execution Unit was only executing two-
thirds of the time. However if the control-flow architecture
had to store and retrieve the values from memory the
number of clock cycles would increase by 54 per iteration
causing it to execute slower than the data-flow
implementation, assuming each memory access only takes
one clock cycle.

The filter also had better performance on the control-flow
architecture. However this was expected as the data-flow
architecture reads the tokens from the external RAM which
takes 16 clock cycles thus the processor would have
computed the result before the next value was added to the
Input List. As this did not give a fair comparison due to the
hardware limitations dictating the processors performance,
the loading section of the program was rewritten so these
tokens were fired multiple times instead of multiple
instances of them being read from memory. With this
alteration the data-flow architecture’s performance was found
to exceed that of the control-flow taking an average of four
clock cycles compared to seven clock cycles per input value.
The reason the data-flow processor is able to output an
almost continuous stream of results is that the proceeding
values beginning execution before the previous values has
been fully executed.
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II. CONCLUSIONS

A subset of the CSIRAC II data-flow architecture was
successfully implemented on an Altera Cyclone FPGA.
However there were some limitations on the design mainly
due to the large amount of memory required and the
configuration of the available RAM. One of these
restrictions was that the program, due to its size, had to be
stored in external RAM. This increased the number of clock
cycles required to load the node definitions by a factor of 16
as the data bus was only 8-bits. This also starved the
processor while executing the filter program, as the previous
token would have completed execution before the processor
had retrieved the next token from the external RAM. The
effect of this could have been reduced by using another
device to implement the external network thus allowing a
larger data bus to be used. Alternatively the token size could
have been reduced however this would cause the processor to
differ from the specifications of the CSIRAC 1I architecture.
The other limiting factor causing the clock speed to be
restricted to SOMHz was the number LEs available on the
FPGA. This caused compromises to be made in the design,
thus limiting possible performance improvements and
reducing the performance gain obtained from the scalability
of a data-flow architecture.

When comparing the performance of the processor to a
control-flow architecture it was found that the performance
advantages of the architecture were only apparent in some of
the programs being executed. This was due to the size
restrictions on the directed graphs being executed, thus the
control-flow architecture was able to use registers for all of
its data storage. However if the program was scaled up the
control-flow architecture would have to access memory,
drastically decreasing its performance, while the data-flow
architecture would only be affected by the increase in the
number of instructions being executed. The program that
performed better on the data-flow architecture was the filter.
This was an expected result as the filter requires a constant
stream of data to be processed simultaneously which is
possible in the data-flow architecture as another iteration of
the graph can begin execution before the previous finishes.
Also, unlike the control-flow architecture, no control logic
is required, thus reducing the number of instructions being
executed from seven down to four.

Some possible improvements to the processor to improve
its performance would be:

--Move the retrieval of the function and literal closer to the
Execution Unit so the dyadic tokens do not have to go
through the Bypass thus increasing the average throughput
of the Execution Unit.

--Distribute the tokens to both the Local and Input List,
thus allow a larger branching factor to be used and therefore
reducing the number of replicates used in the programs.

--Allow the Local List to send tokens to the Bypass and
the Matching Store simultaneously.

--Collect the initialize tokens from another source so a
larger word size can be used or alternatively have a different
clock for this section to ensure the maximum clock speed to
collect the tokens.

--Implement the architecture on a larger FPGA allowing it
to be scaled-up, therefore the performance will be
comparable to the control-flow architecture. Also this would
allow the implementation of the design alteration that were
previously disregarded because of the size restrictions of the
FPGA.
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