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Two roads diverged in a wood, and I –
I took the one less traveled by,
And that has made all the difference.

Robert Frost, The Road Not Taken

Abstract— Most approaches to simultaneous localisation and
map building (SLAM) are based on rigorous models of the
robot’s locomotive mechanism, sensor errors and environment.
This motif inherently translates into a long string of simplifying
assumptions and contrivances, which run counter to real-world
operation. In this paper, a novel approach to SLAM is proposed
that makes the pessimistic assumption that the robot is being
continuously kidnapped over time. The robot’s locomotive mech-
anism and traversal irregularities are therefore irrelevant. There
is no vehicle model and associated dead-reckoning information,
and no assumption of continuity in the robot’s motion. Thus,
SLAM can be implemented as a standalone device in a similar
manner to the Global Positioning System (GPS); providing the
robot, however complex or unpredictable, anonymity.

The presented approach comprises a landmark detection
algorithm for extracting arbitrary environmental features (not
necessarily structured); a multiple-hypothesis data association
algorithm for recognising landmarks perceived from different
viewpoints; and a qualitative error algorithm for representing
and handling the positional uncertainties of the robot and
landmarks. Practical results were gathered from several outdoor
experiments using a vehicle equipped with a scanning laser
rangefinder. This paper argues that the kidnapped way, the road
only now traveled, facilitates navigation in natural environments.

Index Terms— Mobile robots, autonomous navigation, SLAM,
position measurement, kidnapped robot problem.

I. INTRODUCTION

S IMULTANEOUS localisation and map building (SLAM)
is the dual process of building a feature based map of

the environment and using a subset of features in this map,
often termed landmarks, to estimate the robot’s absolute pose.
SLAM is fundamental to mobile robot autonomy, especially
for navigating efficiently and purposefully in an a priori
unknown environment. However, it has proven to be a complex
problem due to three forms of uncertainty: data association
uncertainty, navigation error and sensor noise [1].

A number of approaches to the SLAM problem have been
proposed, each with relative strengths and weaknesses. Most of
these approaches are probabilistic in nature and are effectively
simplifications of Bayes filter [2]; the most popular being the
estimation-theoretic or extended Kalman filter (EKF) based
approach [3]–[5].

The authors are with the Intelligent Robotics Research Centre, Monash
University, Clayton, Victoria 3800, Australia (e-mail: dorian@ieee.org).

The EKF approach provides a theoretically sound solu-
tion to SLAM and a means of systematically studying its
convergence properties, evolution of the map and propa-
gation of positional uncertainties. In practice, however, the
approximation errors caused by linearising the system and
measurement functions can lead to filter instability and an
inconsistent map [6]. Also, the assumptions of Gaussianity and
independence of model errors and perfect data association may
not hold true. The risk of the latter assumption being violated
increases as environmental clutter or uncertainty in the robot’s
estimated state grows, especially when using the gated nearest-
neighbour (NN) algorithm [7]. Although multiple hypothesis
tracking (MHT) [8], [9] can provide more robust data associ-
ation, it increases the computational complexity.

Arguably the biggest problem with the EKF is its reliance
on stringent models to support its predictive behaviour. This
reliance means that its operational performance is largely
dependent on the extent to which the robot and its environment
are predisposed to the modeling process. This invariably leads
to exclusivity. The types of robots and environments that
cannot be easily modeled or manipulated are often avoided,
and those that can are tightly bounded with little tolerance for
the unknown.

The expectation maximisation (EM) approach, proposed in
[10], has several advantages over the EKF. Firstly, it provides
a solution to the data association problem that does not require
the unique identification of landmarks. Data association is
performed through gradual reinforcement or degradation of
matching probabilities as all the observation data over time
is considered. This allows past data association decisions to
be revised and possibly corrected. The EM approach also
does not assume Gaussian noise. However, a disadvantage
is that it does not provide an incremental solution to SLAM
where a map is progressively built as observations are made.
Another disadvantage is that it is generally only suited to
offline processing, though there are exceptions like [11].

Recently, the FastSLAM [12] approach, based on the particle
filter [13], was proposed that has several key strengths. Firstly,
data association decisions are robustly made on a per-particle
basis, analogous to MHT. That is, instead of just maintaining
the data association with the maximum likelihood, the pos-
terior tracks multiple data associations that can be resolved
over time. Secondly, it has theoretically a lower computational
complexity than the EKF: O(m log n) compared to O(n2)
where m and n are the number of particles and landmarks in
the map, respectively. FastSLAM can also cope with a non-
linear vehicle model without the need for linearisation. The
downside, inherent to all proactive approaches, is that there
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can be an insufficient number of states or particles in the
vicinity of the correct one causing the filter to diverge. This is
especially a problem in large environments or when the robot
is kidnapped [14]. Also, the resampling process continually
reduces the diversity of the particle set [15], which restricts
the size of the loop that can be corrected back in time (the
concept of closing the loop is described in [16]–[18]).

There are other SLAM approaches that use scan matching
[19], where the idea is to match the overlapping segments
of neighbouring sensor scans, e.g., from a laser or sonar
scanner, to estimate the robot’s change in pose. Many of these
approaches are derived from the Iterative Closest Point (ICP)
algorithm [20], [21]. They iteratively refine an initial robot
pose estimate obtained from dead-reckoning information on
the assumption that the initial estimate is close enough to the
robot’s true pose to arrive at the globally optimal match.

Overall, the current approaches are largely reliant on strin-
gent models of the robot’s locomotive mechanism, sensor
errors and environment (such as the robot’s smooth traversal).
The roboticist (or engineer) implementing one of these ap-
proaches then has the dubious task of modeling these aspects
and defining appropriate model boundaries. The intractable
real-world, however, is not amenable to such artificial bound-
aries. So, to achieve some semblance of reliability, SLAM is
tailored to operate in only a sliver of the real-world or context-
specific situation, and the whole modeling process repeated for
another sliver, and so on ad infinitum.

This paper sets forth a challenging proposition. A new
SLAM approach is proposed that is based on continuously
solving the kidnapped robot problem over time. The kidnapped
robot problem is defined as the problem of re-localising a
mobile robot after its undergone an unknown motion, or in
figurative terms, been kidnapped and clandestinely placed at
an unknown location. It is typically considered in the context
of a one-off, unwanted navigation event that needs to be
first detected and then resolved. However, in this case, it
is assumed to be continuously occurring over time, and by
solving such a problem, the specifics of the robot’s locomotive
mechanism becomes irrelevant. Therefore, whether the robot
locomotes via wheels, tracks, limbs, or one of the recent self-
reconfiguring designs [22]–[24], has no bearing on the working
operation of this approach.

Several other important outcomes are realised. Firstly,
odometry and an associated vehicle model are not required,
and so this approach is not vulnerable to the large non-
systematic errors [25] that occur from the physical interaction
between the robot and its environment (e.g., outdoor surface
irregularities causing a robot’s wheels to slip or unpredictable
undercurrents acting on a submersible). Another important
outcome is that there is no assumption of continuity in
the robot’s motion. This means that the SLAM process is
essentially decoupled from the robot itself and, ergo, has a
similar flexibility to the Global Positioning System (GPS)
in terms of a standalone device. The difference being that
instead of communicating with orbiting satellites like a GPS
receiver, the proposed approach functions by sensing the local
environment.

However, purposely disregarding odometry and the con-

straints imposed by the robot’s locomotive mechanism is an
extreme approach to SLAM that may seem illogical, espe-
cially if this information is readily available. In terms of
the EKF, this is equivalent to making robot pose predictions
with infinite uncertainty. The rationale is that the proposed
approach only disregards this information in pursuit of its
generalised applicability to an arbitrary robot, regardless of
the robot’s suitability to modeling. But in a context-specific
situation, dead-reckoning information from odometry and pos-
sibly inertial sensors (gyroscopes and accelerometers) can
be added at will, with varying degrees of accuracy, to the
SLAM process to improve performance. The benefit is that
the proposed approach is still fundamentally based on solving
the kidnapped robot problem and so it is only vulnerable to
its authoritative reference – the environment – and not the
robot itself. However, contrary to other SLAM approaches, the
means of using odometry is outside the scope of this paper.

The proposed approach consists of three subsystems: land-
mark detection, multiple-hypothesis data association, and po-
sitional error representation and handling. While the ap-
proach from a holistic perspective is novel in itself, these
subsystems are also novel in their ideas and methods. The
landmark detection subsystem is used to observe arbitrary
environmental features (not necessarily structured) and select
the most useful amongst them, allowing for redundancy. The
multiple-hypothesis data association subsystem is used to
match landmarks perceived from different robot locations and,
correspondingly, address any uncertainty or ambiguity that
results from the matching process, assuming that a gross
discontinuity (no previous landmarks available) does not occur.
The last subsystem maintains the positional errors of the robot
and landmarks with no assumptions regarding the statistical
size or shape of sensor noise.

Section II describes the proposed approach and its subsys-
tems in the context of a complete, albeit preliminary package.
Section III presents the results gathered from several outdoor
experiments in national parks and bushlands1 with a modified
vehicle (1996 Mazda MX-5) acting as a pseudo robot. The
vehicle was equipped with a 3D laser scanner and did not use
odometry. Finally, Section IV concludes the paper with some
of the many directions for future research, including rigorous
analyses, comparative studies and extensions.

II. THE KIDNAPPED WAY

This section provides a blueprint of the proposed SLAM
approach. The objective is to estimate the system state xk

at discrete time instant k, given by xk = [xrk
x1 . . . xn]T

where xrk
is the robot’s state and the set M = {xi | 1 ≤ i ≤

n} represents the map of observed landmarks. The robot’s
state is defined by its 2D pose (position and orientation) in
space xrk

= [xrk
yrk

θrk
]T relative to the global reference

frame shown in Fig. 1. The landmarks in the map M are
represented as points in space xi = [xi yi]

T .

1A term used to describe the harsh Australian outback.
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Fig. 1. Robot Coordinate System

A. Landmark Detection

The landmark detection process involves using a sensor
system to perform scans of the environment, and in each
scan, observe a batch of landmarks and their relative geometric
relationships. Since these relationships tend to remain invariant
to the observer’s point of view [26], they can be exploited to
recognise landmarks whose appearance would otherwise vary
according to the robot’s changing pose. There is a multitude
of active and passive sensors [27]–[29] that can be used. But
because exteroceptive based sensing is such a critical element
of this SLAM approach, there are several sensor qualities that
are either necessary or, at the very least, highly desirable.

Firstly, the sensor needs to be able to gather a rich, dense
data set in each scan that adequately represents a collection
of landmarks. The more information that can be gathered
to distinguish landmarks, e.g., size, shape, colour, texture,
inter-landmark distances and angles, the less combinational
matches that exist between the landmarks in a scan and their
possible counterparts in the map and, hence, the more efficient
the data association process. Secondly, during the scanning
interval, the robot is assumed to be either stationary or have a
negligible movement with respect to the scanning speed. This
is a requirement because without dead-reckoning information,
motion compensation cannot be applied to the data set. Also,
in the case of 2D SLAM, the sensor may need to either remain
in an upright position, e.g., by being suspended on a gimbal,
or ascertain its roll and pitch angles through auxiliary sensors
such as an inclinometer or gyroscope to track the horizontal
plane when the robot traverses over an undulating surface.

An important objective is to maximise the angle of view
and range (depth of field) of the sensor in order to ensure
a high probability of overlap between the scan and map,
and to maximise the overlapping region if one exists. There
are also domain considerations that dictate the suitability
and capacity of different sensing modalities. In a natural
outdoor environment, for instance, a laser scanner can be used
to accurately determine the surrounding geometry, whereas
changing lighting conditions can make differentiating subtle
shades of colour using a digital camera unreliable.

To provide a representative example, the authors obtained
the outdoor results in Section III using the 3D laser scanner
proposed in [30]. This scanner, shown in Fig. 8, consists of a
laser rangefinder (LaserAce IM HR from MDL, UK) mounted
on a pan-tilt unit (PTU-46-17.5 from Directed Perception, CA,
USA) for 3D angular positioning. The laser rangefinder has

maximum range of 300m; a resolution of 1dm; a typical
accuracy of 3dm; and makes range measurements at a rate
of 1000Hz. A 3D scan is performed by using the pan-tilt unit
to horizontally slue the laser in a back-and-forth manner, while
incrementally adjusting its elevation angle.

After each scan, the landmark detection algorithm extracts a
batch of landmarks from the collected data set. The algorithm
proposed here, first described in [31], extracts a set of 2D point
landmarks in the sensor’s local frame of reference (refer to
Fig. 2) that represents the centroids of environmental features
whose spatial extent is orthogonal to the sensor’s horizontal
plane. This involves searching for arbitrary features (of no
particular shape) that are highly visible, laterally compact and
not partially occluded by other features. The first two criteria
are based on relative measures. That is, highly visible features
are those that occupy a large spatial range along the z-axis
relative to their neighbours. Lateral compactness is a measure
of how small a feature extends in the horizontal direction.
Features that are more laterally compact than others tend
to have a lower variability in their perceived centroid when
viewed from different positions, and therefore provide more
accurate triangulation results. The third criterion, by contrast,
removes unstructured features that are partially hidden behind
other features, as their true appearance cannot be ascertained.

Fig. 2. Sensor Reference System

This algorithm is based on the concept that highly visible
landmarks produce more rangefinder readings per unit area
on the horizontal plane, projecting the z′ component, than
those that are less visible. However, merely counting and
comparing the number of readings that fall within each cell
of a regular 2D grid presents a number of problems. Since
the sensor system operates through the rangefinder pivoting
about a central point, the point distribution of a scan decreases
radially outward from the local origin with regard to sampling
density. Therefore, landmarks positioned closer to the origin
are favourably biased. Also, scanning the support surface (i.e.,
the ground) can produce relatively high point counts and,
consequently, false landmarks.

The spiderweb grid, shown in Fig. 3, was devised to
address these problems. This grid somewhat normalises a
scan’s irregular point distribution and through a scanline
algorithm, described shortly, removes obstructed landmarks
and unusable surface characteristics. It is stored as a 2D
array in computer memory, with each cell row representing
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the circular space swept out by a sequence of angles at a
certain distance range from the origin. The parameter dmax

represents the rangefinder’s maximum range (in this case,
300m). The parameters δd and δθ′ are dependent on the
rangefinder’s measurement errors and the scan’s horizontal
angular resolution, respectively. The objective is to assign
values to these two parameters that ensures the points of
an arbitrary landmark lie within adjacent cells. The larger
these parameter values, the more redundancy that is used in
fulfilling this objective, however, the coarser the grid. We
used the values δd = 5dm and δθ′ = 0.514◦, derived from
multiplying the rangefinder’s typical accuracy by 1 2

3 and the
scan’s horizontal resolution by 10, respectively.

Each scan point can be added to its respective grid cell
(dcell, θ

′
cell) using the following equations:

dcell ≈
⌊

d cos(φ′)
δd

⌋
, for small δθ′ (1)

θ′cell =
⌊

θ′

δθ′

⌋
(2)

However, before any points are added to the spiderweb, they
are processed by the scanline algorithm. This algorithm is
applied sequentially to each scanline (set of points grouped
by a common elevation φ′) as follows.

First, a temporary 1D grid is created with a size of
⌈

360◦

δθ′

⌉
cells. The cell sequence of this grid represents the same
angular increments as those of a cell row in the spiderweb;
however, instead of the individual cells holding a point sum,
they hold a dcell value. Each point in the first scanline is
added to the grid by first calculating its θ′cell value to index
the corresponding cell and then calculating its dcell value
to set the value of this cell, subject to a few provisions.
If the indexed cell already has a value set by a previous
point, then the dcell value of the current point replaces the
previous one if it is lower, otherwise it is discarded; hence
each cell maintains the minimum dcell value. Also, since the
rangefinder hits a stop at either end of its rotational movement,
the transitory deceleration, reversal and acceleration period
makes the readings at both ends of the scanline unreliable.
Therefore, a percentage of the readings is discarded from both
ends (we chose 2%). An example of this process is shown in
Fig. 4. The symbol ‘∞’ denotes invalid rangefinder readings,
possibly caused by the rangefinder pointing at free space, such
as the sky, or features that are too close.

After all the points are added to the grid, adjacent cells
that have dcell values within ±1 are clustered together (see
Fig. 4). The clusters that have dcell values at both ends (i.e.,
furthermost left and right cells) that are lower than those of
the adjoining ends of neighbouring clusters are considered
to be unobstructed landmark segments. (Note that a ‘∞’
value is treated as being infinitely large and an unknown
value, i.e., an empty cell, is treated as being zero for the
comparisons; however, cells with either of these two values
do not constitute valid clusters.) All cells belonging to these
unobstructed landmark segments are added to the spiderweb
by incrementing the point counts of the corresponding cells.
The process then reiterates for each of the remaining scanlines.

Fig. 3. Spiderweb Grid

Fig. 4. A Scanline Processing Example

The resulting landmarks in the spiderweb are all the groups
of adjacent cells with a point count higher than zero. Each
of these landmarks is assigned an importance weighting,
calculated by dividing its total point count by the number
of cells. Since this weighting is proportional to a landmark’s
visibility and spatial compactness, the best landmarks are
selected by limiting the landmark set to only a certain number
of those with the highest weighting (we often limited it to
20). A convex hull [32] is then created around each of them
to extract their centroid points. This provides the landmark set
Sk = {sj, k | 1 ≤ j ≤ mk} at time k where the landmarks,
such as trees, bushes, posts, buildings and rock formations,
are represented by 2D points in local coordinates sj, k =
[x′j, k y′j, k]T . The number of landmarks detected mk must be
at least three to obtain a unique triangulation result in 2D
SLAM. However, preferably more than this critical number is
detected for the purpose of redundancy.

The stability of the landmarks when viewed from different
positions is affected by a number of factors, aside from sensor
noise. Firstly, when viewing a large object from different sides,
different facets will be visible, and so the centroid will appear
to move. Also, the area of each of the cells in the spiderweb,
denoted A(dcell, θ

′
cell), varies according to

A(dcell, θ
′
cell) =

(
dcell +

1
2

)
δd2 sin(δθ′) (3)

along with the granularity of centroid placement. These factors
are taken into account using a Euclidean error distance ε
as a tolerance bound for each centroid. Landmarks that are
laterally large, and thus can be occluded from the sensor’s
field of view to a considerable degree, may be represented
by multiple centroids over time. In essence, each of these
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centroids represents an individual landmark whose appearance
is restricted to when the robot is in a particular viewing area or
zone. The number of centroids can be reduced and the zones
expanded by increasing ε, though at the risk of increasing the
possible data associations in a cluttered environment.

B. Multiple-Hypothesis Data Association

The multiple-hypothesis data association algorithm matches
the batch of landmarks extracted from the scan Sk to those in
the map M , while considering any ambiguities that arise from
environmental symmetries or sensor limitations. Since at time
k = 0 the environment is unknown, the first scan S0 can be
used to provide both the global frame of reference, as shown in
Fig. 1, and the initial set of landmarks in M . The robot’s pose
is also initialised, somewhat arbitrarily, to xr0 = [0 0 0]T . The
proposed data association algorithm is then executed for time
k ≥ 1. This algorithm will be first described based on the scan
S = {s1, . . . , sm} (the time subscripts have been left out for
brevity) and map M = {x1, . . . ,xn} at time k = 1, and then
it will be shown how multiple hypothesis tracking (MHT) is
incorporated for future times.

Unlike most other SLAM approaches, data association in
this approach cannot be performed using the standard gated
nearest-neighbour (NN) algorithm [7], because without dead-
reckoning or motion continuity information, the required pose
predictions cannot be made. Instead, we propose a graph
matching approach that transforms the scan S and map M
into two graphs G1 = (V1, E1) and G2 = (V2, E2), re-
spectively, and then finds subgraph isomorphisms between
them to determine their commonalities. The vertex sets V1

and V2 of the graphs are used to represent the individual
landmarks, which in this case are only distinguished by 2D
points. The edges that interconnect the vertices, given by the
sets E1 ⊆ V 2

1 and E2 ⊆ V 2
2 , are used to represent geometric

relationships that are invariant to the robot’s viewpoint. In
doing so, common subgraphs of the graphs G1 and G2, and
hence data association hypotheses, can be found independently
of the robot’s pose. The geometric relationships that are used
here are the Euclidean distances between landmark points.
While these relationships may not be as discriminant as others,
e.g., the relative landmark orientations [33], their detection
does not rely on structured features being in the environment.

A data association hypothesis can now be given by the
correspondence set X ⊆ V1×V2, where the vertices in each of
the matched pairs 〈sa,xb〉 ∈ X share a consistent set of edges.
Since the graphs are matched based on their edges, there is a
complexity problem that arises if the graphs are complete (i.e.,
fully connected). While the scan graph G1 remains relatively
small, the map graph G2 is dynamically expanding over time,
causing an exponential growth in the number of edges.

For a complete map graph with n vertices, the number of
edges is given by the binomial coefficient

(
n
2

)
. Therefore, the

number of edges in a graph with 10 vertices is 45; 100 vertices
is 4950; or 1000 vertices is 499, 500. To reduce this growth
rate, an edge filter is proposed that confines the inter-landmark
relationships to only those between neighbouring landmarks.
This filter is based on the Delaunay triangulation (DT) [34],

Fig. 5. Edge Count as a Function of Depth Level for a 1000-Vertex Graph

which can optimally generate a triangular mesh from a point
set in O(n log n) time.

First, a DT is created for both the landmark sets S and
M . The resulting mesh edges, indicating the closest landmark
neighbours, form the initial edge set of the corresponding
graphs G1 and G2, respectively. The vertices of these graphs
are now linked to their most immediate neighbours, which is
called a depth level of one. To obtain a depth of two, edges
are added to the graphs that link landmarks that are separated
by a path length of two in the DTs. Similarly, a depth of
three is obtained using a path length of three; and so on. The
selection of which depth level to use is a tradeoff between
graph completeness and computational complexity. The depth
can also be changed over time, e.g., decreased to compensate
for an expanding map, or different values can be used for each
of the vertices, as a measure of their importance or uniqueness,
to regulate their contribution to the matching process.

To demonstrate how the number of edges varies according
to the chosen depth, a simulation was performed that generated
1000 random points on a 2D plane. The edge filter was then
applied, with the depths ranging from one to twenty for all
vertices. The resulting edge counts are graphed in Fig. 5. As
an example, a depth of two resulted in 9784 edges, which is
roughly 2% of the number in a complete graph.

Apart from a selectable reduction in the number of edges,
an important property of this filter is that it can adapt to
changes in the density and separation of landmarks. That is,
a landmark’s nearest neighbours is determined by the spatial
attributes of its local cluster. Its nearest neighbours is also
influenced by the DTs optimality criterion (maximising the
minimum angle of the triangles); however, we conjecture that
other triangulation schemes can be used with similar results.

A depth of two will be used here for both the scan graph G1

and map graph G2. Hence, the only vertices of these graphs
that will be interconnected by edges, representing Euclidean
distances, are those that satisfy the edge filter at a depth of two.
An example of the resultant graphs G1 and G2 is shown in
Figs. 6(a) and 6(b), respectively. (Note that the edge distances
are to scale.) Although they happen to be complete in this
instance, due to their small size, their primary function is to
provide a simple example for describing the matching process.
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(a) Scan Graph (G1) (b) Map Graph (G2)

(c) Correspondence Graph (C)

Fig. 6. Common Subgraphs of the Graphs G1 and G2

The first step of the proposed matching algorithm involves
creating a correspondence graph [35], denoted C, which rep-
resents the compatibility between each of the pairs 〈sa,xb〉 ∈
V1 × V2. The vertices of graph C are all the pairs whose two
elements share a common property, i.e., a connecting edge
of equal distance (within tolerance bounds). The edges of C
represent the consistency between each of these vertices. That
is, if 〈s1,x2〉 and 〈s3,x4〉 are two vertices of C, they are
interconnected by an edge if the distances associated with
E1(s1, s3) and E2(x2,x4) are equivalent. The method for
creating graph C involves first finding all the edge matches
between graphs G1 and G2, and then adding the possible
vertex combinations of each edge match to C as vertices and
interconnecting those that are compatible with edges. As an
example, the edge E1(s2, s3) of G1 in Fig. 6(a) is a match
for the edge E2(x3,x4) of G2 in Fig. 6(b). The possible
vertex combinations, and hence the resulting vertices in C,
include 〈s2,x3〉, 〈s2,x4〉, 〈s3,x3〉 and 〈s3,x4〉. The compat-
ible edges are {〈s2,x3〉 , 〈s3,x4〉} and, through symmetry,
{〈s2,x4〉 , 〈s3,x3〉}. The final state of the correspondence
graph after all the matched edges between G1 and G2 have
been incorporated is shown in Fig. 6(c).

It is common practice to then find the maximum clique
(maximum complete subgraph) in graph C to obtain the
maximum common subgraph (MCS) of the graphs G1 and
G2 [33], [36]. However, there are several problems with this
approach. Firstly, finding the maximum clique of an arbitrary
graph is NP-complete, and hence computationally complex
[37]. Furthermore, the graphs G1 and G2 would have to
be complete, which as discussed previously, exacerbates the

complexity problem as the map M expands over time. Another
issue is that the MCS, while the best match, may not be the
right match. The MCS is merely the best hypothesis at one
particular time instant; however, another common subgraph
may prove to be a better hypothesis over time. Consequently, a
new algorithm is proposed that finds common subgraphs based
on the notion that only three consistent vertices in graph C
are required to triangulate the robot’s pose.

First, the vertices of graph C are ordered according to
their degree (valence) sequence, i.e., in monotonically non-
increasing degrees from the maximum degree ∆C to the
minimum δC (see Fig. 6(c)). The reason for doing this is
that it heuristically places the vertices that are most likely
to belong to a large common subgraph early in the order.
Next, the vertices are processed in turn, by following each
of their edges in search for a triangular subgraph. To show
some examples, several triangular subgraphs are highlighted in
Fig. 6(c), such as the subgraph {〈s2,x3〉 , 〈s3,x4〉 , 〈s4,x5〉}.

When a triangular subgraph is found, the circle intersection
approach [31] is used to triangulate the robot’s pose xrk

based
on the three constituent vertices. A unique pose is found if
the three vertices do not lie on a straight line (otherwise a
conjugate pair is obtained). The robot’s pose is then used to
transform the scan S from local to global coordinates:

xj = xrk
+ x′j cos(θrk

)− y′j sin(θrk
) (4)

yj = yrk
+ x′j sin(θrk

) + y′j cos(θrk
) (5)

With both the scan S and map M now being in the same
coordinate system, the points in S are directly compared to
those in M in a similar manner to RANSAC [38] to obtain the
complete set of vertex matches (inliers) and a match count.
This constitutes one hypothesis. The process then reiterates
for the next triangular subgraph that is found; however, if it is
a subset of the earlier hypothesis, then it can be eliminated.

There are two ways in which this algorithm can terminate.
The first way is if every triangular subgraph has been found
and processed in a brute force manner. The second is as an
anytime algorithm [39], which takes advantage of the vertex
order to arrive at the best hypotheses within the available time
window. After completion, the resultant hypothesis set is given
by Hk = {h(λ)

k | 1 ≤ λ ≤ Λ}, where Λ is the number of
hypotheses in the set. Note that the superscript ‘ (λ) ’ will also
be used for other variables to indicate a particular hypothesis.

The hypotheses Hk are handled by the MHT algorithm,
which resolves their associated data association ambiguities by
tracking and assessing them over time. It must be emphasised
that in a kidnap situation there is a possibility of no overlap
between the scan S and map M , in which case the set Hk

would be empty or completely erroneous. This situation, which
is discussed in Section IV, is not addressed by the MHT
algorithm proposed here; hence an overlap is assumed.

The MHT algorithm does not compare hypotheses based
on a probabilistic model like in [9]; instead, hypotheses are
weighted according to how many data association matches
are made over time. Therefore, stronger hypotheses are those
whose evolution of the map better corresponds with the
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accumulated observation data. Each hypothesis h
(λ)
k maintains

its own version of the map M (λ), robot path x(λ)
r0 : k and vertex

match count w
(λ)
k . The hypotheses are compared based on their

accumulated match count W
(λ)
k over k time periods, given by

W
(λ)
k =

k∑
t=0

w
(λ)
t (6)

Initially, one hypothesis h
(1)
0 is created at time k = 0 to hold

the map M (1) (from scan S0), robot pose x(1)
r0 and match count

w
(1)
0 (initialised to zero). For time k ≥ 1, the data association

algorithm is executed for each hypothesis in Hk−1, which
produces a new set of hypotheses Hk. These hypotheses are
then compared based on their accumulated match count W

(λ)
k .

The best hypothesis, and hence the SLAM solution, is the one
with the highest weighting; however, the best Λmax are kept.
The map building algorithm is then called for each hypothesis
in turn (described in the next subsection). This process then
reiterates for the next time instant.

The maximum set size Λmax is used to maintain computa-
tional tractability by limiting the number of hypotheses being
spawned during each cycle. Weak hypotheses are eliminated
in a “survival of the fittest” manner, leaving strong hypotheses
to reign. The potential problem with this, however, is that
there may be a point in the past where all hypotheses share
the same robot path, which as a result, cannot be revised by
this algorithm. This is in fact a similar problem to that found
when limiting the number of particles in FastSLAM [15]. The
selection of Λmax is thus a tradeoff between the hypothesis
diversity and computational complexity.

C. Positional Error Representation and Handling

This subsection presents a novel approach to the represen-
tation and handling of positional errors that is considerably
different to any of the current approaches. For instance, there
is no use of Gaussian probabilities like in the EKF [3],
nor does the multiplicity of samples in one of the Monte
Carlo approaches [13] have any discernible similarities. The
idea behind this approach stems from a simplification of the
correlation problem [3], [4], which is generally the problem
of maintaining the robot-landmark correlations that are formed
when the robot’s imprecisely known pose is used to update the
landmark positions and vice versa. However, since this SLAM
approach is based on continuously solving the kidnapped robot
problem, the uncertainty in the robot’s pose at time k is
entirely attributable to the landmarks used in the triangulation.
Therefore, the only correlations that need to be maintained are
between the landmarks themselves.

Each landmark is correlated to the specific landmarks used
to triangulate its global position. Consequently, a landmark’s
positional accuracy is dictated by the accuracy of its corre-
lated landmarks, along with the sensor system and landmark
detection process (note that odometry does not play a role
here). Now, if we forgo any rigorous error models of the
sensor system, and the associated contrivances, then the initial
landmarks in the map M (1) (from scan S0) at time k =
0 can be considered the most accurate of all landmarks,

as they define the global origin and are not based on any
triangulations. Landmarks that are added to the map from scan
S1 at time k = 1 are triangulated using three of the initial
landmarks, and therefore are based on one triangulation. As
a result, their positional uncertainty is higher than the initial
landmarks because the scanning process introduces new errors,
e.g., sensor noise. Similarly, if the landmarks from scan S2

at time k = 2 are triangulated using three of the landmarks
added to the map at time k = 1, then they will be based
on two triangulations, as their positions are derived from a
triangulation of a triangulation. Again, these landmarks have
a higher positional uncertainty than their correlated landmarks
because the scanning process introduces additional errors.
From this, we can conclude that the number of triangulations
from which a landmark’s position is based is associated with
an accumulative error. Given that the sensor system has a
limited range, landmarks further away from the origin will
tend to be based on more triangulations and, consequently,
have larger positional errors.

The way in which positional errors are handled is analogous
to solving the well-known traveling salesman problem (TSP)
[40], which is the problem of finding the shortest closed path
between n cities, given their intermediate distances. In this
case, the problem is defined as finding the shortest path be-
tween each of the n landmarks and the origin, where the path
length is given by the number of triangulations from which
a landmark’s position is derived. Therefore, the objective is
to minimise the number of triangulations used to reach every
landmark, and in doing so, minimise the sequential transfer
and distortion of primary information (the initial landmarks).

Another analogy is found in a common game known as
Chinese whispers or the telephone game. Players line up and
the first person whispers a phrase to his or her neighbour. The
neighbour then whispers the message to the next player, and so
on down the line. The last player then calls out the message
received, which may bear little resemblance to the original
message due to the accumulative effect of mistakes along
the line. In terms of the proposed approach, if the message
represents the initial landmarks and a person represents a
triangulation, then the idea is to remove as many people from
the line as possible to minimise the chance of error.

The error in each of the landmark positions x(λ)
i is repre-

sented by a single nonnegative integer ξ
(λ)
i ∈ Z∗. Likewise,

the error in the robot pose x(λ)
rk at time k is represented

by the integer ξ
(λ)
rk ∈ Z∗. These integers store the path

sizes (number of triangulations), and so they each provide a
qualitative indication of the magnitude of a positional error.
Note that if two landmarks have equal error values, this does
not necessarily mean they have the same quantitative errors.
It means they both share the same number of time instants
where quantitative errors were accumulated.

At time k = 0, the initial landmarks in the map are each
assigned a qualitative error value of zero, as they are based
on zero triangulations. For time k ≥ 1, the map of each
hypothesis is updated using Algorithm 1 in O(w) time. (Note
that the hypothesis and time notation has been left out for
brevity.) The variable ξS represents the error of each of the
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Algorithm 1 Update Map
Require: k ≥ 1

1: ξS ← max{ξi}i∈TS
+ 1

2: for all 〈sa,xb〉 ∈ X do
3: if ξb ≥ ξS then
4: xb ← sa {in global coordinates}
5: ξb ← ξS

6: Tb ← TS

7: end if
8: end for
9: add new landmarks with error ξS and triangulation TS

landmarks in scan S, along with the robot (i.e., ξr ← ξS). Each
of the map landmarks xi has an associated index set Ti, which
contains the indices of the landmarks used to triangulate it. For
example, if landmark x13 has the index set T13 = {3, 5, 8},
then it was triangulated using landmarks x3, x5 and x8. The
index set associated with the initial landmarks at time k = 0 is
the null set ∅. The map landmarks used to triangulate the scan
S is given by the index set TS . Lastly, the correspondence set
X represents the w landmark matches between the scan S and
map M , as hypothesised by the data association process.

If the environment is static, as is commonly assumed, then
this algorithm can be extended in several ways. Any changes
to a landmark xi can be recursively propagated down to all
the landmarks whose position is correlated with it, thereby in-
creasing the convergence rate. Also, without dead-reckoning or
motion continuity information, there is essentially no causality
between the scans. The scan order can be continually adjusted
to maximise data associations or minimise the overall error
of the map. The computational cost, however, prohibits the
amount of optimisation that can be done in real-time.

There are several properties about the proposed approach
that need to be considered. Firstly, sensor noise is only consid-
ered in qualitative terms; there are no models or assumptions
regarding its statistical size or shape. Although the qualitative
errors do not differentiate between different sensors such as a
laser or sonar, they tend to be proportional to the quantitative
errors which are dependent on the particular sensor used.
Secondly, the way in which the map converges is based on
recursively triangulating each landmark’s position using three
of the most accurate landmarks that can be observed in the
same scan. As a result, there will be a convergence limit that
is determined by the landmark arrangement, including density,
and the sensor’s range and accuracy. Particularly, the longer
the range of the sensor, the more the map converges, and
the lower the growth rate of positional errors outward from
the origin. Note that the robot’s navigational ability is not
necessarily hampered when its far away from the origin, as
its locally surrounding landmarks can have relative errors that
are considerably lower than their global ones.

Finally, addressing the loop closing problem [16]–[18],
especially for cyclic environments, will be left for future work.
Just as a brief comment, the common problem of detecting a
previously visited place is merely part of normal operation.
There is also no odometric drift, and so errors accumulate

around the loop at a relatively small rate.

D. Pathological Cases

There are several cases in which the proposed approach to
SLAM can fail. Firstly, since the approach is based entirely
on exteroceptive sensing, it cannot function in an environment
that has no detectable features. Essentially, the system would
become lost. Another failure case is a completely symmetrical
environment (no distinguishable features). As an example, if
the robot were to navigate down a straight road with only
equidistant trees on either side, then the multiple hypotheses
that are created cannot be resolved. Consequently, the SLAM
process cannot determine if the robot is moving forward or
differentiate between the robot standing still or driving at full
speed. The unresolvable hypotheses can make it seem that
the robot is teleporting between multiple poses, and for this
reason, we call it the teleportation problem.

Failure can also occur in the case of a very large or cluttered
environment. In these situations, the uniqueness of landmark
relativities, such as inter-landmark distances, may diminish
to a point where the number of possible data associations is
too large to process in real-time. If the environment is too
cluttered, then the tolerance bounds of the landmarks may
permit an inordinate number of false data associations that
appear to be symmetries. Also, clutter can significantly impair
the sensor’s view, limiting the number of previously detected
landmarks that can be rediscovered. These problems can be
partially counteracted by using a more exclusive landmark
recognition technique or bringing dead-reckoning information
back into the equation, as discussed in Section IV.

III. EXPERIMENTAL RESULTS

This section presents the results from four outdoor exper-
iments. In chronological order, the first experiment was per-
formed at the You Yangs Regional Park; the second experiment
at Warrandyte State Park; and the third and fourth experiments
at a large bushland property, owned by the second author,
in Pomonal near the Grampians. These areas are all located
in the state of Victoria, Australia: Warrandyte State Park is
in Melbourne; You Yangs is 55km south-west of Melbourne;
and Pomonal is 239km north-west of Melbourne in country
Victoria. They were not scouted beforehand and no artificial
landmarks were added.

Fig. 7 shows the robot used in all the experiments. This
robot, which we call the Hunter, is a modified vehicle (1996
Mazda MX-5) with a 3D laser scanner attached to the front tow
hooks. The laser scanner, described in Section II-A, is shown
in Fig. 8. It is controlled by a Linux box on the passenger
seat and powered by a 12V car battery in the floor well. The
driving controls (steering wheel, brake, accelerator, etc.) are
not automated due to the difficulty of dealing with a manual
transmission, but more importantly, the Hunter doubles as the
first author’s primary mode of transportation.

The vehicle was driven along an arbitrary path in each
experiment, except for the last two in Pomonal where an online
path planner was used (not described in this paper). Since the
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Fig. 7. The Hunter in a Natural Environment

SLAM algorithm was always executed online, the results given
here were available to the driver during the experiments.

For each of the experiments, labeled I through VI, the
specific parameters that were used will be given first, followed
by the results. Note that if certain parameters are omitted from
a particular experiment, then their values have not changed
from those used in the previous experiment.

A. Experiment I

In the first experiment, the scans were performed using
a horizontal range of θ′ ∈ [−129◦, 129◦], horizontal slue
rate of 51.4◦/s (giving a horizontal resolution of 0.0514◦),
vertical range of φ′ ∈ [−18.0◦, 7.71◦] and vertical resolution
of 0.514◦. This resulted in each scan taking approximately
255, 000 readings over a time period of 4.25 minutes. The
parameter values used for the spiderweb included: dmax =
300m, δd = 5dm and δθ′ = 0.514◦. The number of landmarks
detected mk was limited to 30; the number of hypotheses
Λmax limited to 3; and the edge tolerance ε set to 0.5m for
all edges. Also, the search space of the correspondence graph
was limited to 1

8 of the order.
The final results, including the solution, ground truth and

landmark errors, are shown in Fig. 9. The ground truth was
obtained using a tape measure and compass at each kidnap

Fig. 8. Sensor System

point. There were two pose errors that were caused by a
barrier of dense bush that significantly blocked the sensor’s
view. As a consequence, there was an insufficient overlap
between the scans and the map; however, the system was able
to recover. The map of the best hypothesis reached a size of
180 landmarks, primarily comprising trees, bushes and plants.

B. Experiment II

For Warrandyte State Park, there was only one parameter
changed: the edge tolerance ε was set to 1m for all edges.
The trees tended to be laterally large in this environment, often
resulting in multiple landmark points per tree. The final results
are shown in Fig. 10.

C. Experiment III

At the property in Pomonal, the scans were performed using
a new vertical range of φ′ ∈ [−17.5◦, 8.23◦] and vertical
resolution of 1.03◦ – the horizontal parameters remained the
same. This reduced the scan size to 130, 000 readings and the
scan period to 2.2 minutes. (We believe these scans are still
significantly larger than what is needed; however, minimising
the scan time was not one of our primary objectives.) Also,
the number of landmarks detected mk was limited to 20, and
the edge tolerance ε set to 1.5m.

The final results are shown in Fig. 11. They have been
overlaid on an aerial photograph of the area that was captured
by a radio-controlled unmanned aerial vehicle (UAV) at an
altitude of approximately 1km. Ground truth was collected
using a GPS unit (GPSmart from Fortuna, Taiwan).

D. Experiment IV

This experiment was performed in a different area of the
same property with the same parameters. Fig. 12 shows the
excellent results obtained, with each pose being a solution to
the kidnapped robot problem.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a novel, contrarian approach to SLAM
that purposely disregards odometry and the assumption of con-
tinuity in the robot’s motion to mimic the portability of a GPS
receiver. The approach functions by continuously solving the
kidnapped robot problem over time through sensing the local
environment. This essentially decouples the SLAM process
from the robot, and in doing so, there is no model of the robot
or its physical interaction with the environment. Therefore, it
can be implemented as a standalone device and transferred
between robots, regardless of their physical makeup.

At the elemental level, contributions were made in the
areas of natural landmark detection, multiple-hypothesis data
association, and positional error representation and handling.
Experiments were performed in several natural outdoor envi-
ronments that were quite hostile toward robotic endeavours.
The results prove the feasibility of the proposed approach.
Similar to a GPS, there was no consideration of the robot’s
type, capabilities, locomotion mode or control process. The
difference is that a GPS functions in open outdoor areas away
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Fig. 9. Experiment I: Results from a Cluttered Environment

Fig. 10. Experiment II: Results from an Environment with Large Features

from environmental features that obstruct the line of sight to
satellites, whereas the proposed approach functions in feature
rich environments where it can find overlaps between the scan
and map.

The situation where there is no overlap between the scan
and map was not addressed here. It can therefore be argued
that some form of continuity was invoked; however, this can
only be attributed to the map boundaries. If the map expands
to cover the robot’s workspace, then, without reservation,
there is no assumption of continuity. Also, incorporating the
information from a scan into the global map requires an
overlap to exist or develop over time. In the latter case, if
the robot were to make extreme jumps to isolated places,
then the local maps of these places could be independently
maintained until they overlapped the global map. This process,
however, can quickly become computationally intractable, as
each map needs to be matched to every other map. Hence, it
is a challenging extension.

The universalness of this approach and the locomotive
freedom it provides to a robot or other agent in its environment
warrants further investigation. Some of the many possible av-
enues for future work include: enhancing the landmark detec-
tion system to extract other environmental features and reduce

Fig. 11. Experiment III: Results from a Harsh Environment (Area 1)

Fig. 12. Experiment IV: Results from a Harsh Environment (Area 2)

data association ambiguities; using negative information (non-
matches) to decrease the confidence in a data association;
complexity analysis of the data association method; pruning
ineffective landmarks from the map; using dead-reckoning
information to improve scalability; performance comparisons
with other approaches; developing a version that can operate
with moving objects, such as people and vehicles, in the scene;
3D SLAM; and, ultimately, commercialisation of a standalone
SLAM sensor.
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