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Abstract

This paper depicts the application of linear quadratic optimal control to the longitudinal flight motion of an
unmanned aerial vehicle (UAV) which has elevon control only.  For a trimmed flight model obtained
experimentally in previous study we develop in order a Linear Quadratic Regulators (LQR) controller
followed by a Kalman filter based estimator for unmeasurable states. The LQR controller is then combined
with the Kalman estimator using the separation principle to investigate the feasibility of altitude control. The
simulation results show improvements compared with classical design counterparts in the sense that the
combined approach offers more design flexibility and is able to tolerate the noisy environments. It shows
reasonable altitude holding, taking off and landing performance. The schemes developed through this
research will be incorporated in our existing autopilots.
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Introduction
There has been an extremely rapid growth in interest in
unmanned vehicles over the last several years.  The
advantages to be had from autonomous vehicles in a
military environment are now well recognised with civil
applications being in their infancy.

A general requirement for UAVs in particular is that
they be inexpensive to operate. This cost can for civil
applications be dominated by operator cost.  Operators
are generally not experts in aerodynamics and so require
aircraft with robust and, where possible, automatically
tuned control systems.

The UAVs of interest to us are small and fly at low
Reynolds Numbers (250K) regimes which, amongst
other challenges, mean turbulent flow and laminar
separation across wing surfaces.  Partially because of
this, the aircraft dynamics are non-linear and at times
uncertain. Aircraft of this size are also very susceptible
to air turbulence.

This paper discusses a preliminary study of applying
linear optimal control of altitude from pitch for an
aircraft that has elevon control surfaces only. Our early
identification work for the aircraft is published in [1]
with extensions to this work in [2]. Relevant control
theory may be found in [4], [5], [6], [7] and [8].  We
have at our disposal a very large repository of flight
logs for our aircraft obtained over several years.  The
logs contain a complete record of aircraft in-flight
dynamics. It is intended to make this material available
to other researchers for their control system studies.

Generating a comprehensive non-linear model for the
aircraft is usually impractical. A more realistic approach
is to develop a linearised model which is valid for a
small dynamic range. Longitudinal and lateral models
for conventional larger aircraft are well understood
([10][11][12][13]).

In this study, we consider time domain optimal control
approaches using a LQR and Kalman filter estimator
[9]. The combination of the two will lead to a Linear
Quadratic Gaussian (LQG) controller that is more
tolerant of uncertainty and noise in a real UAV flight
environment. The design approach also offers several
advantages compared with the classical PID controller.
Positions of closed loop poles and overall performance
can be adjusted by varying the values of weighting
matrices accordingly. While control tool-boxes of the
type found in MatLab make the composition process
simple the offline algorithms are significantly more
computationally intensive than the current simple PID
based control loops computed online or in-flight where
we have electrical and computational power limitations.

UAV Longitudinal Model
Most conventional aircraft have three primary control
surfaces, namely, rudder, elevator and ailerons. Along
with the throttle they are the four major input variables
to control the flight of an aircraft. The aircraft used in
this study (Fig. 1 and Table I.) is a flying wing and if
unswept it is known as a “plank” because of its
resemblance of course to a plank of wood. Most flying
wings have only two control surfaces or elevons that
combine the function of ailerons for roll control (and
indirectly turn) and elevators for pitch control.

Planks are simple to construct and can be made to be
very compact, rugged and crash tolerant. The flight
characteristics of planks are benign, at least for human
operators and they also exhibit predictable stall
behaviour allowing them to descend quickly and safely.
All of these characteristics were important in the design
of P15035, its sister aircraft P16025 and the
superficially similar Dragon Eye now widely deployed
with the US Marines.

Flying wings, because they do not have a tail, rely on
some reverse camber (upsweep in the trailing edge of
the wing) to maintain a zero pitching moment and with
that comes drag and less energy efficiency. To minimise
the reverse camber we have to minimise the stability
margin in the pitch axis. In this study, the stability
margin has been made sufficiently high to allow human
control.  The controller described here will permit us to
use airfoils with less camber and less drag both for
computer assisted and autonomous flight.

Fig. 1 The P15035 Aircraft.
(reproduced with the permission of J. Bird

a member of the Aerobotics Group)

Pitch is controlled by the average deflection of the two
elevons and roll (and indirectly yaw) by the difference,
at least to a first order approximation.  It is worth
noting that for planks roll is normally controlled by
deflecting the elevons equally in an attempt to control
yaw and to again minimise unnecessary drag. It is
feasible to control the elevons independently in a more
optimum fashion rather than have them coupled in a
relatively simple relationship. This will be developed
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further in later research, but for now, we will
concentrate on pitch-axis control where the elevons are
driven in unison.

TABLE I
SPECIFICATIONS OF AIRCRAFT P15035

Span 150 cm Motor Electric
Chord 35 cm Duration 40-60 minutes
Length 106 cm Speed 33 to 150 Kph
Controls Elevon Battery 28×GP3300NiMh
Weight 2.9 to 4.6 Kg Autopilot MP2028

The longitudinal model and lateral directional model for
the P15035 have been obtained using normal system
identification techniques [11], [12] and [13] based on
real flights, as distinct from simulation, and were
initially reported in [1].

For trimmed flight with a constant engine thrust (and
airspeed) the P15035’s longitudinal discrete time
transfer function from the elevon average deflection ∂
(degree) to the pitch angle θ  (°) with a sampling
frequency of 5 Hz is 
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It is apparent that as all poles of (2) are located on the
left hand side of the s plane so the open loop system is
stable as we expect.

It has been established (e.g., see [3], [4], [5] and [15])
that the typical longitudinal dynamics of a traditional
aircraft (elevator to pitch) with a constant engine thrust
can be expressed as
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where δ is now the elevator angle (instead of the elevon
average in (2)). For  aircraft, the factor

22 2 pppp sss ωως ++=Δ  in the characteristic equation of
(3) is termed the phugoid mode, and the second one

22 2 ssss sss ωως ++=Δ  is the short period mode.
Typically, the phugoid mode is overdamped with a
relatively large time constant and the short period mode
represents under-damped oscillation. The overall pitch
step response is a combination of a slow exponential
function and a quickly decaying high frequency
oscillation.
 

Comparing (2) with (3), it can be seen that the
longitudinal model (2) has pitch characteristics which
are similar to those of conventional aircraft. Its phugoid
model is

               )1087.0)(4633.0( ++=Δ sssp .         
(4)
This is overdamped with a dominant large time
constant of T=10s. Its short period model is given by:

            12.83887.42 ++=Δ ssss .         
(5)

Here the damping ratio is 0.268 and the natural
frequency 9.12 rad/s. The settling time is small being
in the order of 1s. The impulse response for both modes
is plotted in Fig. 2.
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Fig. 2 Impulse pitch amplitude responses in degrees for phugoid and
short period modes of UAV P15035.

Optimal Flight Controller Design
Having confirmed that the longitudinal response is of
the general form expected, we now determine the pitch-
to-altitude transfer function in z  domain with a
sampling frequency of 5 Hz as
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Converting (6) to s domain and cascading it with (2),
we obtain the following transfer function
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where h is the altitude of the aircraft in metres.

State Equations

Converting (7) into its state space counterparts, we have
the following state space description
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(8)
in which,          

Short period mode response

Phugoid mode response
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For an LQR controller, the system to be controlled has
to be both controllable and observable for all states as is
the case for (8).

LQR Controller

Under the assumption that all state variables are
available for feedback, in what follows, we consider the
LQR design. For a given quadratic cost function

             dtRuuQxxJ TT )(
0

+= ∫
∞

,                         (9)

in which Q , R  ≥ 0 are real state and input weighting
matrices respectively. The objective is to determine an
optimal state feedback control law

   kxu −= ,         (10)

which can drive all state variables rapidly to their
equilibrium point. By considering the following Ricatti
Equation

 01 =+−+ − QPBPBRPAPA TT .           (11)
we can determine the solution for P and the optimal
gain k is now

PBRk T1−= .        (12)

The closed loop poles are moved to provide ideal
performance.

Performance Test
Fig. 3 shows the unit step responses for different
weighting matrices Q  and R . The overshoot is not
significant as the overall closed loop system is still
dominated by phugoid poles which are located on the
real axis.

Fig. 4 displays how incrementing Q affects the location
of the closed loop poles whilst R is kept constant. As
the values of Q increase form 10I to 100I with a step
size of 10, the locations of 2 conjugate closed loop
poles gradually shift to the left and the position of the
other 3 dominate poles remain relatively unchanged.
The damping factors of 2 poles on the far left increase

gradually from 0.32 to 0.611 as Q is increased from 10I
to 100I. At the same time the damping factors of 2
poles near the imaginary axis decrease slightly from
0.687 to 0.632. Meanwhile, the damping factor of fifth
pole on the real axis remains unchanged and determines
the large time constant of the exponential component of
the response. Generally speaking, there are slight
increases for the undamped natural frequency as Q
increases in the range 0.36 to 0.46 rad/s.  

It is easy to understand that a larger state error-
weighting matrix Q leads to greater control action and
therefore larger feedback gain K  (Fig. 5). As a
consequence, an input gain scaling N is used for each
value of Q (Fig. 6). It is apparent that the larger the
value of weighting matrices Q the smaller the value of
its corresponding gains adjustments. Starting from Q =
10I, the value of N decrease gradually from almost -
0.06 to about 0.2 when Q is set to be 100I.
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Fig. 3  Step responses of altitude for varying Q and R in which the
top plot shows for fixed R = I the larger Q  the quicker response and

the bottom plot shows for fixed Q = I the larger R the slower
response.

 
If R is varied and Q remains constant, the locations of
closed loop poles remain relatively unchanged, as
shown in Fig. 7. There are slight decreases in the un-
damped natural frequency as R increases and a slight
shift to the right of the closed loop poles. Larger Q and
smaller R values will result in an energy saving through
a reduced control action. Because k is smaller there is a
slower closed loop response and a longer time to reach a
steady state value. Fig. 9 shows the gain scaling factors
as the control weighting matrix increases.
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Fig. 4 Effects of Q vis closed loop poles’ locations
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Fig. 5 Value of optimal gain for each state feedback
channel affected by Q
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Fig. 6 Input gain adjustment as Q increases
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Fig. 7 Effects of R  vs closed loop poles’ locations
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Kalman Filter

In last section, we designed the LQR controller using
state feedback under the assumption that all state
variables are measurable. However, in practice, this
assumption is unlikely to be true. In our application of
autopilot design only two state variables altitude and
airspeed may be available. In this section we consider
the Kalman filter for state estimation. Given the
following state and output equations

     
vCxy

FwBuAxx
+=

++=&   ,                    

(13)
where w and v are process and sensor noise respectively,
we introduce a state estimator (14)
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where x̂  is an estimate of x. The overall state equations
may be obtained from (13) and (14) as
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Let 
wS  and 

vS  be the spectral densities of zero mean
white noise w  and v  respectively, the optimal
estimation gain L vector is given by

                  1−= v
T SPCL ,                  (16)

in which, P is the solution of the following equation:

            01 =−++ − CPSPCFFSAPPA v
TT

w
T .        

(17)
The Kalman filter altitude estimation estimation
compared with its real value for 

wS , 
vS  = 1.0  are

shown in Fig. 10. Its gain L is given by
     TL ]0188.00132.00032.00024.00016.0[ −−−= .  (18)

For HzmNSw /100 22=  and HzSv /deg1 2= , which
correspond to a process noise of 1w and a sensor noise
of  0.01w. The optimal gain is
    TL ]0315.00721.00769.00177.02178.0[ −−−= .   (19)

Linear Quadratic Gaussian Design
Using a Kalman filter we were able to obtain the
estimates of unmeasurable flight states. By combining
the Kalman filter and LQR control, the estimated state
variables can be used to replace the unmeasurable state x
in (10) to give

                     rxku +−= ˆ ,         
(20)

where r is the reference input signal and x̂  is the
estimated state obtained using the Kalman filter. The
design objective is to minimize a quadratic cost
function given by the limit

               dt
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Fig. 10 Real altitude, its estimate and estimation error for Sw=1 and
Sv=1 (top two plots) and Sw=100 and Sv=1 (bottom two plots)

By combining the Kalman filter and LQR equations,
we obtain the following augmented matrix:
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where L, given by (16), is the Kalman filter feedback
gain.

The LQG design leads to the optimal gain

3.0980]    17.3437   24.8761   2.4575    [1.2252  =K . (23)
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The resulting closed loop eigenvalues, their damping
ratios and undamped natural frequencies are given in
Table II.

TABLE II
CLOSED LOOP CHARACTERISTICS OF LQG CONTROL

No Eigenvalues Damping Frequency

1 -2.91 + 8.64i 0.32 9.12
2 -2.91 - 8.64i 0.32 9.12
3 -0.486 1.00 0.486
4 -0.192 + 0.203i 0.687 0.280
5 -0.192 – 0.203i 0.687 0.280

                                                     
The Kalman filter optimal gain is now given by

TL ]0315.00721.00769.00177.02178.0[ −−−=    (24)
and its closed loop characteristics are given in Table III.

TABLE III
CLOSED LOOP CHARACTERISTICS OF KALMAN FILTER

No Eigenvalues Damping Frequency
1 -2.44 + 8.78i 0.268 9.12
2 -2.44 - 8.78i 0.268 9.12
3 -0.958 + 1.55i 0.526 1.82
4 -0.958 - 1.55i 0.526 1.82
5 -1.79 1.00 1.79

The closed loop performance of altitude control,
including takeoff, altitude hold and landing using the
LQG controller is shown in Fig. 11. In the simulation,
the altitude command is a step function of 100m, hold
at 100m and step back to 0m at t=25s. Noise was
included during the simulation to determine how
effectively noise is rejected. The results show acceptable
performance with zero steady state error and smooth
transition response.  It has been assumed that airspeed
remains constant in the airspeed from throttle loop.

Conclusion
LQR, Kalman filter and LQG linear optimal approaches
were applied to control of the altitude from pitch
control loop of an elevon controlled flying wing. It was
shown that the LQG controller formed from a
combination of LQR controller and Kalman filter
provides substantial flexibility through the choice of
appropriate weighting matrix values. This flexibility
includes tuning the controller for reduced control servo
energy consumption albeit with longer settling times.
Such flexibility is important as control servos are the
greatest consumers of electrical energy even on P15035
which has only two servos; more conventional aircraft
have upwards of six servos. We can choose to switch
between fast response, high energy and slower response
but lower energy consumption in-flight.

We are currently exploring how we may best implement
this research in our current autopilots [17].

Fig. 11  LQR controller performance for take off, altitude holding
and landing in which noise intensities are Sw =100 and Sv = 1
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