
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-6-2007

Synthetic Coupled Workload Models for the Bespoke Framework
Generator and MPI

Egan,G.K., Riley, G.D., Ford, R.W., and Armstrong, C.

Abstract— This paper describes a synthesiser for
synthetic computational coupled-models. The Synthesiser
produces input metafiles for variants of the Bespoke
Framework Generator as well as a freestanding MPI
implementation.

Index Terms—coupled-models, synthetic, workloads,
MPI, BFG.

I. INTRODUCTION
OUPLED-MODELS are comprised of two or more

entities that exchange messages. The message
exchanges need not be periodic. In many cases the
communications may be asynchronous, that is, not
locked to a particular time, and usually result in a change
in the internal state of the communicating entities.

It may be argued that all natural systems act like
coupled-models. Communication between entities is
certainly asynchronous with communication rates
depending upon the rate of change of local state.
Communication is usually short-range with the effects of
local state change propagating with some latency across
the large collection of entities. The coupled-models may
often be hierarchical or at least viewed as such.

More recently there has been an interest in
interconnecting existing legacy codes, each modeling
some facet of a physical system, to obtain a better
understanding of the overall system’s behaviour. Global
weather modeling, bringing together atmospheric, ocean
and surface codes amongst others, is but one example.

There is usually a profound reluctance to modify the
constituent legacy codes some elements of which were
developed decades ago and may often exhibit some
fragility and occasionally incompatible science. The
fragility is arguably due to later authors.

The Centre for Novel Computing at Manchester has
been involved for some time in the development of
frameworks to support coupled-models and their
deployment. The Bespoke Framework Generator (BFG)
was developed to support these studies.

Unfortunately there are relatively few significant
coupled-models available to researchers. In many cases

those that exist are not generally accessible for extended
studies on scheduling (static and dynamic) and the use of
heterogeneous distributed computing platforms. This is
usually because of IP issues associated with particular
codes. BFG recognizes this be requiring only the interface
specifications to build the harness code for a
coupled_model.

This paper describes a synthesiser for workloads
intended to support extended studies in coupled-models
including dynamic workload scheduling and the
scalability of coupled-models generally.

II. THE BESPOKE FRAMEWORK GENERATOR

BFG, using a set of metafiles, produces harness code
linking several legacy codes allowing them to exchange
information periodically. The harness conditionally calls
subroutines within the legacy codes directly. The
metafiles specify which codes are to be used, the
subroutine entry points, how the codes are connected and
the types of the data to be exchanged.

It is not our intention here to detail BFG as it is
covered adequately elsewhere [1-7].

The clear intention is not to alter the original legacy
codes in any way. However coupling these codes often
discloses unstructured initialization and/or reliance on
side effects in the codes as presented.

III. TERMS

The terms outlined here attempt to cover those most
likely in coupled-models with synchronous periodic
communications and are used in various BFG variants.

A <coupled_model> is comprised of two or more
<model>s.
• Each model may communicate periodically with one

or more other <successor> models but not with itself
directly, this in any case being unnecessary as each
model preserves its internal state. For any given
successor this per iod is cal led the
<coupling_period>.

 Synthetic Coupled
Workload Models for the Bespoke Framework

Generator and MPI
G.K. Egan1, G.D. Riley2, R.W. Ford2, and C. Armstrong2

Department of Electrical & Computer Systems Engineering1

Monash University
Melbourne, Australia.

Centre for Novel Computing2

School of Computer Science
University of Manchester, England

Manchester, England

C

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

• Models commence executing after some initial
number of cycles or <offset>.

• Models are enclosed within an overall loop or
<iteration>; completion of one iteration constitutes a
<cycle>. Some models may not execute every
iteration but every fixed number of cycles or
<model_interval>.

• A communication may be specified to arrive at its
successor(s) after some <lag> from the current
iteration.

• The graph will repeat its pattern of communications
after some number of iterations. This is termed a
<major_cycle>.

• The communication links between models may, or
may not, be <primed>. Priming and the priming
sequence must consider the possibility of deadlock.
Priming occurs in the <initialization> phase outside
the main iteration.

• Finally the coupled-model after completing the
requisite number of iterations performs
<termination>. Some coupled-models may be
continuous and so there is no <termination> as such
but there may be break-pointing which could be in
the form of a priming-set of messages and captured
model-state for a restart.

In what follows the offset is set to zero.

IV. BFG VARIANTS

It may be seen that if the model_intervals of
communicating pairs of models and the associated
coupling_periods and lags of the connecting links
expressed in iterations do not follow a ‘convenient’
modulo inter-relationship then models may communicate
infrequently or possibly never!

To make the Synthesiser a little more rational we
restrict the models generated as follows.

There are a number of ways that the main iteration may
be generated under BFG. One form has an iteration
corresponding to the least frequently executing model and
plants loops within the main iteration to iterate some
models at higher rates corresponding to their
model_intervals. Alternatively the iteration is determined
by the most frequently executing model with others being
executed modulo their model_interval. We chose the
latter scheme for the Synthesiser.

A. BFG2
BFG2 currently uses only model_interval. Models
execute if:

 (iteration mod model_interval)=0 (1)

Models execute every model_interval regardless of
whether they receive new messages from other models.

They receive messages from predecessor models on any
given input if:

((iteration-successor_model_interval) mod
 predecessor_model_interval)=0 (2)

Models send data to successor models if:

(iteration mod successor_model_interval)=0 (3)

To do this their firing condition (1) must also be
satisfied.

B. BFGx
For BFGx we assume models execute when messages

arrive at one or more of their inputs. At least one model
is assumed to execute on the first iteration.

Messages are sent or received if:

(iteration mod coupling_period)=0 (4)

We have chosen here not to use model_interval to
further condition which messages are received or
transmitted. The more general consequence of this is that
if a model receives one or more communications in a
particular iteration it becomes active in turn sending
messages to successor models. This may be viewed as a
more data-driven coupled-model with explicit lag in each
communication path. The model_interval for any given
model varies depending upon arriving messages.

V. THE WORKLOAD SYNTHESISER

The Synthesiser generates BFG2, BFGx coupled-
models and simple flat models. Flat models are directed
graphs with no iterations.

The directory tree of files produced contains:
1. f77 Model sources and associated Makefiles.
2. BFG metafiles for:
• models,
• composition,
• coupling, and
• default deployment

3. An unrolled directed acyclic graph, of nominally
one major cycle in the case of BFG2. For BFGx
the length of a major_cycle is not immediately
obvious. For flat graphs it is the entire graph.

4. An MPI f77 compilable source.
Examples of the files generated are given in the

Appendix. The default deployment is MPI with all
models executing conditionally on every iteration. There
are no ordering dependencies between the models for any
given iteration.

A. Synthesis process
The overall process is relatively straightforward

consisting of producing models with random memory-
footprints and execution times interconnected randomly
to other models. The interconnections must observe the
constraints of the BFG specification [2].

a) Models
Each model has three subroutines corresponding to the

initialization, iteration and termination phase. The
subroutines are generated from a simple f77 template.

The memory-footprint and run-time, chosen randomly,
are assumed (perhaps unrealistically) to be uncorrelated.
The memory-footprint is exercised by indexing a vector
of size memory_footprint cyclically modulo the loop

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

variables controlling the run-time (See Appendix). Timers
are not used as target processors may have varying
performance and for scheduling it is necessary that models
do see a reduced execution time on faster processors. Strictly
run-time should be seen as a normalized workload.

b) Coupling
The number of successor models for each model and the

coupling_periods associated with each connection are chosen
randomly. Models are not connected directly to themselves.

Message sizes are chosen at random and again are
assumed to be uncorrelated to memory-footprints or run-
times. Data in the messages is not used by the synthesised
models other than to propagate a distributed checksum.

B. DAG
 The coupled-model is unrolled as a directed acyclic graph

(DAG) for a major-cycle with an initial dummy source
model and final dummy sink model inserted to form a
complete DAG as required by some scheduling techniques.
These have no associated computation cost. The numbering
of the unrolled models is systematic permitting the original
model’s identity to be determined.

The DAG is intended to be used to produce a static or at
least initial schedule to guide BFG’s deployment generation
or other scheduling studies.

A constant communication rate between models is
assumed, which is reasonable given that the schedule is not
known to the Synthesiser. As the Synthesizer also does not
have information on relative processor performance it
produces a cost file that assumes equal performance.

The communication and processor cost files generated can
be rescaled to reflect the actual relative processor
performance and inter-processor communication cost. It is
anticipated that this would be drawn from a database of
previously measured performance. The Synthesiser may be
modified easily to incorporate database information but for
now normalized performance is deemed acceptable.

Files compatible with the “dot” graphical display
program from the Graphviz suite [8] are produced to allow
visualisation of the DAGs. One form shows models as
simple bubbles while the other shows the models as
rectangles with their height scaled to run-time.

Artificial dependencies, between invocations of each
particular model, have been introduced to reflect the order
imposed by the model_intervals for BFG2; they have no
communication cost.

C. MPI
The MPI versions of the synthesized coupled-models are
intended to be independent of BFG and act as a reference for
automatically generated control and communications code
produced by BFG Synthesisers.
MPI wrappers are generated that receive messages, call the
associated model subroutine, and conditionally send
messages. A root MPI program invokes the models in a
containing iteration for BFG or directly in the case of a flat
execution model.

D. Synthesiser parameters
The Synthesiser takes a single line of input data from
standard input. For most parameters the numeric value is the

upper bound of an interval from which the actual parameter
is chosen at random. The fields are as follows:

• <model type> The type of model to be
synthesized;{0=bfg2, 1=bfgx, 2=flat}.

• <fully connected> If set then all models will have at
least one input or output connection;{0=may not be
fully connected, 1=fully connected}

• <number of processors> This is the number of
processors on which the final model will be expected
to run.

• <scale> The Synthesiser builds models of a particular
run-time based on and assumed base processor
performance corresponding to a Dell desktop dual
core Pentium circa 2007. If the actual processor is
twice as fast then the scale should be set to 2.0

• <models> The number of models comprising the
coupled model excluding and dummy source or sink
models. Models are named from m1 upwards.

• <model interval> This is the maximum model
interval.

• <fanout> The maximum number of successor models
for any given model.

• <coupling period> The maximum coupling period.
• <lag> The maximum lag included for completeness

as the Synthesiser sets lag to zero.
• <run-time> The maximum run-time in seconds for

any model assuming the Pentium base processor.
• <memory-footprint> The size of the memory-

footprint in 32bit words that synthesized models will
index cyclically.

• <message size> The maximum message size in 32bit
words that will be sent between models.

• <plot rectangles> DAG representations in “dot”
format; {0=circles, 1=rectangles scaled to run-time}.

There is some limited checking of parameter validity.
Because of the random generation process some graphs may
be sparsely connected.

Setting the fully connected parameter results in the
Synthesiser attempting to generate models where there is at
least one connection to a model when it is executed. If it is
not set then the Synthesiser may still produce a connected
model; it simply does not check.

Re-running the Synthesiser will produce another
(different) coupled-model for the same input specification.
The maximum number of models comprising the
coupled_model is 200.

VI. EXAMPLES

A number of examples follow. Each is annotated with its
associated specification file. The communication weightings
on arcs in these graphs as they only serve to clutter.

A. BFG2 Coupled-model with Four Models
In this case both time-scaled and unscaled versions are

shown. Note that although a connected model has been
selected it does not as one may expect guarantee that the
models are fully connected, just that there is at least one
connection.

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

0 1 4 1.0 4 5 2 5 1 5.0 100000 10000 0

0 1 4 1.0 4 5 2 5 1 5.0 100000 10000 1

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

B. Short Ten Model Graph
This is an example of a flat graph with the fanout and

coupling interval increased dramatically to produce a short
or squat graph. For flat graphs the coupling_period
parameter corresponds to the reach of an output arc i.e. how
many models it may span.

2 1 10 1.0 10 5 4 100 1 5.0 100000 10000 1

C. Tall Ten Model Graph
This is an example of a flat graph with the coupling

interval and fanout reduced to produce a tall graph.

2 1 10 1.0 10 5 1 1 1 5.0 100000 10000 1

VII. CLOSING COMMENTS

It is hoped that the Synthesiser outlined in this report
will prove useful, or at least spark some enthusiasm, for
further developments to support coupled-model research.

The Synthesiser is expected to be found at [7].

ACKNOWLEDGMENT

The authors thank the researchers in the Centre for Novel
Computing at Manchester for the motivation to construct
the Synthesiser.

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

REFERENCES
[1] Riley, G.D., ‘Coupled-model Notation and Examples V1.0’,

Technical Report, Centre for Novel Computing, School of Computer
Science, University of Manchester, 10 Nov 2006, draft.

[2] ‘Bespoke Framework Generator Version 2 Specifications’,
Technical Report, Centre for Novel Computing, School of Computer
Science, University of Manchester, to follow.

[3] Bane, K., et al., Armstrong, C., Ford, R., and Riley, G.D., ‘A User
Guide to Framework Generation using bfg’, Technical Report,
Centre for Novel Computing, School of Computer Science,
University of Manchester, 2003.

[4] Ford, R.W., Riley, G.D., Bane, C.W., Armstrong, C.W., and
Freeman, T.L., ‘GCF: a general coupling framework’, Concurrency
and Computation: Practice and Experience’ Volume 18, Issue 2 , pp
163 – 181, Special Issue: Computational Frameworks , Ed. Aad J.
van der Steen. Published Online: 11 Oct 2005.

[5] Ford, R.W., and Riley, G.D., FLUME A Flexible Unified Model
Environment Model Coupling Requirements, Met Office, 2002. See
[6].

[6] Ford, R.W., and Riley, G.D., ‘FLUME A Flexible Unified Model
Environment D4 High Level Design’, Met Office Project No.
PB/A4872, Version 1.4, 10 Oct 2003,
http://www.metoffice.gov.uk/research/interproj/flume/

[7] ‘The Bespoke Framework Generator’,
http://www.cs.manchester.ac.uk/cnc/projects/bfg.php

[8] Graphviz, http://www.graphviz.org/

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

APPENDICES

 m3.f

c University of Manchester Centre for Novel Computing
c Synthetic Workload Synthesiser G.K. Egan 2007
c Generated 9 Mar 2007 13:37:50

 subroutine init_m3(init_m3_1)
 integer init_m3_1
c empty
 return
 end

 subroutine end_m3()
c empty
 return
 end

 subroutine m3(m3_1, m3_2, m3_3)
c model interval 2
c inputs 2
c outputs 1
 integer i,j,k,mcheck
 integer a(58429),
 + m3_1(6071),
 + m3_2(4414),
 +
 + m3_3(1384)

c rudimentary signature generation
 mcheck=0
 mcheck=xor(mcheck, m3_1(1))
 mcheck=xor(mcheck, m3_2(1))
c time calls not used otherwise workload would vary
 with processor
 k=1
 do 100 i=1,580,1
 do 100 j=1,2150,1
c run through the footprint sequentially modulo footprint
 k=mod(k+1, 58429)+1
 a(k)=a(k)+1
 100 continue

 return
 end

m3.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- University of Manchester Centre for Novel Computing -->
<!-- Synthetic Workload Synthesiser G.K. Egan 2007 -->
<!-- Generated Models 9 Mar 2007 13:37:50 -->
<definition xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="BFG2HOME/bfg2/schema/
definition.xsd">
 <name>m3</name>
 <author>Synthesiser G.K. Egan</author>
 <type>scientific</type>
 <language>f77</language>
 <timestep>2</timestep>
 <entryPoints>
 <entryPoint type="init" name="init_m3">

 <data name="init_m3_1" direction="in" form="argpass"
 id="1" dataType="integer" dimension="0"></data>

 </entryPoint>
 <entryPoint type="iteration" name="m3">
 <data name="m3_1" direction="in" form="argpass"
 id="1" dataType="integer" dimension="1">
 <dim value="1">
 <lower><integer>1</integer></lower>
 <upper><integer>6071</integer></upper>
 </dim>
 </data>
 <data name="m3_2" direction="in" form="argpass"
 id="2" dataType="integer" dimension="1">
 <dim value="1">
 <lower><integer>1</integer></lower>
 <upper><integer>4414</integer></upper>
 </dim>
 </data>
 <data name="m3_3" direction="out" form="argpass"
 id="3" dataType="integer" dimension="1">
 <dim value="1">
 <lower><integer>1</integer></lower>
 <upper><integer>1384</integer></upper>
 </dim>
 </data>
 </entryPoint>
 <entryPoint type="final" name="end_m3">
 </entryPoint>
 </entryPoints>

</definition>

Compose.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- University of Manchester Centre for Novel Computing -->
<!-- Synthetic Workload Synthesiser G.K. Egan 2007 -->
<!-- Generated Composition 9 Mar 2007 13:37:50 -->
<composition
xmlns:xsi="http://www.w3.org/2001/xmlSchema-instance"
xsi:noNamespaceSchemaLocation="BFG2HOME/bfg2/schema/
composition.xsd">
 <connections>
 <timestepping>
 <set name="init_m1_1">
 <primed>
 <data dimension="0" datatype="integer" value="1"/>
 </primed>
 <field modelName="init_m1" epName="init_m1" id="1"/>
 </set>
 <set name="m1_2">
 <!-- integer(8416) -->
 <primed>
 <data dimension="1" datatype="integer" value="1"/>
 </primed>
 <field modelName="m1" epName="m1" id="2"/>
 <field modelName="m2" epName="m2" id="1"/>
 </set>
 <set name="init_m2_1">
 <primed>
 <data dimension="0" datatype="integer" value="2"/>
 </primed>
 <field modelName="init_m2" epName="init_m2" id="1"/>
 </set>
 <set name="m2_2">
 <!-- integer(8477) -->
 <primed>
 <data dimension="1" datatype="integer" value="2"/>
 </primed>
 <field modelName="m2" epName="m2" id="2"/>

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

 <field modelName="m1" epName="m1" id="1"/>
 </set>
 <set name="m2_3">
 <!-- integer(1812) -->
 <primed>
 <data dimension="1" datatype="integer" value="2"/>
 </primed>
 <field modelName="m2" epName="m2" id="3"/>
 <field modelName="m4" epName="m4" id="1"/>
 </set>
 <set name="init_m3_1">
 <primed>
 <data dimension="0" datatype="integer" value="3"/>
 </primed>
 <field modelName="init_m3" epName="init_m3" id="1"/>
 </set>
 <set name="m3_3">
 <!-- integer(1384) -->
 <primed>
 <data dimension="1" datatype="integer" value="3"/>
 </primed>
 <field modelName="m3" epName="m3" id="3"/>
 <field modelName="m4" epName="m4" id="2"/>
 </set>
 <set name="init_m4_1">
 <primed>
 <data dimension="0" datatype="integer" value="4"/>
 </primed>
 <field modelName="init_m4" epName="init_m4" id="1"/>
 </set>
 <set name="m4_3">
 <!-- integer(6071) -->
 <primed>
 <data dimension="1" datatype="integer" value="4"/>
 </primed>
 <field modelName="m4" epName="m4" id="3"/>
 <field modelName="m3" epName="m3" id="1"/>
 </set>
 <set name="m4_4">
 <!-- integer(4414) -->
 <primed>
 <data dimension="1" datatype="integer" value="4"/>
 </primed>
 <field modelName="m4" epName="m4" id="4"/>
 <field modelName="m3" epName="m3" id="2"/>
 </set>
 </timestepping>
 </connections>
</composition>

Coupling.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- University of Manchester Centre for Novel Computing -->
<!-- Synthetic Workload Synthesiser G.K. Egan 2007 -->
<!-- Generated Coupling 9 Mar 2007 13:37:50 -->
<coupled xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="BFG2HOME/bfg2/schema/
coupled.xsd">
 <models>
 <model>../m1/xml/m1.xml</model>
 <model>../m2/xml/m2.xml</model>
 <model>../m3/xml/m3.xml</model>
 <model>../m4/xml/m4.xml</model>
 </models>
 <composition>compose.xml</composition>

 <deployment>deploy.xml</deployment>
</coupled>

Deploy.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- University of Manchester Centre for Novel Computing -->
<!-- Synthetic Workload Synthesiser G.K. Egan 2007 -->
<!-- Generated Default Deploy 9 Mar 2007 13:37:50 -->
<deployment
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="BFG2HOME/bfg2/schema/
deployment.xsd">
 <deploymentUnits>
 <deploymentUnit language="f77">
 <sequenceUnit threads="1">
 <model name="m1"/>
 </sequenceUnit>
 <sequenceUnit threads="1">
 <model name="m2"/>
 </sequenceUnit>
 <sequenceUnit threads="1">
 <model name="m3"/>
 </sequenceUnit>
 <sequenceUnit threads="1">
 <model name="m4"/>
 </sequenceUnit>
 </deploymentUnit>
 </deploymentUnits>
 <target>mpi</target>
 <schedule>
 <bfgiterate>
 <init>
 <model name="m1" ep="init_m1"/>
 <model name="m2" ep="init_m2"/>
 <model name="m3" ep="init_m3"/>
 <model name="m4" ep="init_m4"/>
 </init>
 <iterate>
 <loop niters="8">
 <model name="m1" ep="m1"/>
 <model name="m2" ep="m2"/>
 <model name="m3" ep="m3"/>
 <model name="m4" ep="m4"/>
 </loop>
 </iterate>
 <final>
 <model name="m1" ep="end_m1"/>
 <model name="m2" ep="end_m2"/>
 <model name="m3" ep="end_m3"/>
 <model name="m4" ep="end_m4"/>
 </final>
 </bfgiterate>
 </schedule>
</deployment>

Mpi_m3.f

 c University of Manchester Centre for Novel Computing
c Synthetic Workload Synthesiser G.K. Egan 2007
c Generated 9 Mar 2007 13:37:50

 subroutine mpi_m3(myid, iteration)
c model interval 2
 include 'mpif.h'
 integer iteration, myid, istatus(mpi_status_size), ierr
 integer
 + m3_1(6071),
 + m3_2(4414),
 +
 + m3_3(1384)

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

 if (iteration.le.2) then
 m3_1(1)=3
 else
 if (mod(iteration-2, 2).eq.0) then
 print *, iteration, "recv m4->m3_1 [6071]"
 call mpi_recv(m3_1,6071,mpi_integer,
 + 4,1,mpi_comm_world,istatus,ierr)
 endif
 endif
 if (iteration.le.2) then
 m3_2(1)=3
 else
 if (mod(iteration-2, 2).eq.0) then
 print *, iteration, "recv m4->m3_2 [4414]"
 call mpi_recv(m3_2,4414,mpi_integer,
 + 4,2,mpi_comm_world,istatus,ierr)
 endif
 endif

 print *, iteration, "exec m3"
 call m3(m3_1, m3_2, m3_3)

 if (mod(iteration,2).eq.0) then
 print *, iteration, "send m3_3->m4 [1384]"
 call mpi_send(m3_3,1384,mpi_integer,
 + 4,2,mpi_comm_world, ierr)
 endif

 return
 end

mpi_m.f

c University of Manchester Centre for Novel Computing
c Synthetic Workload Synthesiser G.K. Egan 2007
c Generated 9 Mar 2007 13:37:50

 program mpi_m
 include 'mpif.h'
 integer iteration
c integer init_m1_1, init_m2_1, init_m3_1, init_m4_1
c call init_m1(init_m1)
c call init_m2(init_m2)
c call init_m3(init_m3)
c call init_m4(init_m4)

 call mpi_init(ierr)
 call mpi_comm_rank(mpi_comm_world, myid, ierr)
 call mpi_comm_size(mpi_comm_world, numprocs, ierr)
 if (numprocs.lt.5) then
 call mpi_finalize(rc)
 print *, "number of processes must be 5"
 stop
 endif

c major cycle length is 8
 do 100 iteration=1,80,1
 if ((mod(iteration,1).eq.0).and.(myid.eq.1)) then
 call mpi_m1(myid, iteration)
 endif
 if ((mod(iteration,4).eq.0).and.(myid.eq.2)) then
 call mpi_m2(myid, iteration)
 endif
 if ((mod(iteration,2).eq.0).and.(myid.eq.3)) then
 call mpi_m3(myid, iteration)
 endif
 if ((mod(iteration,2).eq.0).and.(myid.eq.4)) then

 call mpi_m4(myid, iteration)
 endif
 call mpi_barrier(mpi_comm_world, ierr)
 100 continue
 call mpi_finalize(rc)

c call end_m1()
c call end_m2()
c call end_m3()
c call end_m4()

 stop
 end

model.dag

% University of Manchester Centre for Novel Computing
% Synthetic Workload Synthesiser G.K. Egan 2007
% Generated 9 Mar 2007 13:37:50
% the node id is computed as (iteration-1)*Models+baseid
 where Models in this case=4
% because of coupling the unrolled node id space is sparse
% the actual number of instances of models
 unrolled including the null source and sink is:
20
% connections and weights (node node weight (~seconds))
1 5 0
5 9 0
9 13 0
13 17 0
17 21 0
21 25 0
25 29 0
29 33 0
14 30 0
30 33 0
7 15 0
……….
14 24 1812
15 24 1384
16 23 6071
16 23 4414
23 33 1384
24 33 6071
24 33 4414

model.cost

% University of Manchester Centre for Novel Computing
% Synthetic Workload Synthesiser G.K. Egan 2007
% Generated 9 Mar 2007 13:37:50
% active ids and no of processors
20 4
% cost of task i on mach j (~seconds)
 0 0.000e+00 0.000e+00 0.000e+00 0.000e+00
 1 1.024e+00 1.024e+00 1.024e+00 1.024e+00
 5 1.024e+00 1.024e+00 1.024e+00 1.024e+00
…..
 29 1.024e+00 1.024e+00 1.024e+00 1.024e+00
 30 3.284e+00 3.284e+00 3.284e+00 3.284e+00
 31 5.800e-01 5.800e-01 5.800e-01 5.800e-01
 32 4.911e+00 4.911e+00 4.911e+00 4.911e+00
 33 0.000e+00 0.000e+00 0.000e+00 0.000e+00

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

A BFG2 coupled model 20 models and a major cycle of 120
0 1 20 1.0 20 5 2 5 1 5.0 100000 10000 1

MECSE-6-2007: "Synthetic Coupled Workload Models for the Bespoke Framework ...", Egan,G.K. et. al.

