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Abstract

This paper presents a navigation algorithm that enables mobile robots to retrace routes previously taught under

the control of human operators in outdoor environments. Possible applications include robot couriers, autonomous

vehicles, tour guides and robotic patrols. The appearance based approach presented in the paper is provably convergent,

computationally inexpensive compared to map based approaches and requires only odometry and a monocular

panoramic vision sensor. A sequence of reference images are recorded during the human guided route teaching

phase. During the autonomous phase, current image is compared against the reference image using image cross-

correlation performed efficiently in Fourier domain to recover the difference in relative orientation. Route following

is achieved by compensating for this orientation difference. Extensive experimental results in urban environments

presented in the paper demonstrate robustness against lighting variations and occlusion to an extend not seen in other

literature. The cumulative distance traveled by the robot in these experiments exceeds 20km.

I. INTRODUCTION

Route following is defined as the ability to repeat the same route after having traversed it once under external

control. This is an important navigation capability for a mobile robot and an active area of research (Tang and

Yuta, 2002; Booij et al., 2007; Segvic et al., 2007; Royer et al., 2005; Goedeme et al., 2005). A potential area of

application is robotic couriers where human operators drive the robot from one destination to another with the robot

subsequently able to repeat the routes autonomously. This paper presents a robust appearance based solution to the

problem of route following in large scale outdoor environments. The navigation system targets urban environments

during daylight hours. Passive vision has been chosen as the primary sensing modality due to it possessing a number

of attractive properties. In comparison to laser range finders, which have finite range, vision is not constrained by

distance to features. The appearance of the environment is also richer in information than the geometry of the

environment. Vision sensors are small in size, low in power consumption, inexpensive as well as being passive in

nature. The challenge associated with vision however, is mainly two fold: loss of information when a 3D world is

projected onto a 2D image plane, and the variation of appearance of visual features depending on lighting conditions.

Possible solutions to vision based route following are discussed next.

Building a geometric map of the environment is a possibility. If the robot can construct a geometric map of

the environment during route teaching and record its trajectory through this map, then route following can be

achieved by localising the robot in this map during the autonomous phase and compensating for the offset from

the route. However, vision based SLAM (Simultaneous Localisation And Mapping) algorithms are still far from

mature. A number of additional constraints make the route following problem a member of a superset of problems

solved by SLAM. Construction of a globally consistent geometric map is the goal of SLAM. Whereas in route

following, provided that a route could be retraced successfully, the way the environment is represented is irrelevant.

Significant deviations from the route is not expected to occur during normal operation. Thus there is no need to

predict the appearance of features from different viewing angles. A convergent feedback system only requires the

correct sign of the lateral offset from the teaching route. Furthermore, the ground surface can be assumed to be

locally flat, resulting in the vertical orientation of the camera being the same when revisiting the same part of the
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route. Thus any differences in robot orientation while retracing the route introduce only a shift in the azimuth angle

of the visual features. Under these constraints the authors propose that the approach presented in this paper, being

algorithmically simpler than the map based approaches, would suffice for the route following problem. It operates

extremely fast and at the same time achieves robustness against occlusion and lighting variations to an extend not

seen in other literature. It is interesting to note that many appearantly simple vision algorithms perform remarkably

well in practice (Srinivasan et al., 2004, 1996, 2006).

II. HARDWARE

Fig. 1: Hardware setup consisting of a Pioneer P3-AT outdoor robot, camera/mirror assembly for panoramic vision,

a laptop and a joystick for manual route teaching.

Figure 1 shows the Pioneer P3-AT outdoor robot that was used as the mobile platform. A web cam directed

towards a panoramic mirror of the profile given in (Chahl and Srinivasan, 2000) provides panoramic vision with

a vertical Field Of View (FOV) ranging from −90◦ to 48◦ in elevation and 360◦ in azimuth (the mirror support

beams cause some occlusion). A sky shade blocks out the sky to improve the camera automatic gain control. It is

covered in aluminium foil such that its brightness changes with ambient lighting. A lens hood was used to mitigate

the problem of lens flares. The camera/mirror assembly is 130cm above the ground.

III. RELATED WORK

As stated earlier, SLAM solves a set of problems of which route following is a subset. A number of pure

visual SLAM implementations in the literature could perform route following but most work only indoors. That
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number reduces drastically when operation in outdoor environments are required. As this paper does not use SLAM

techniques, only a few prominent vision only systems are discussed here to highlight their shortcomings as solutions

to route following. SLAM using monocular vision alone has been achieved only recently and some emphasis has

been placed on real-time map generation (Davison, 2003). Since route following does not require online map

building Royer et al. (2005) used a time consuming but more accurate method to build maps offline. However,

image feature tracking and association still needed to be done in real-time for localisation. The systems of Davison

(2003); Royer et al. (2005); Herath et al. (2006) and most other geometric mapping based systems use points/corners

as visual features. For example, the Harris corner detector was used in (Royer et al., 2005) to detect interest points.

Feature association was done using normalised cross-correlation of a neighbourhood of pixels around the interest

point. These features are sensitive to the choice of scale at which they are detected. Ideally, the features should

be detected for all scales by progressive image subsampling. Point features offer the advantage of being easy to

detect and localise. However, features such as the outlines of buildings and vegetation are significant visual features.

But these features, especially the outlines of vegetation, are difficult to model geometrically because they change

quickly with viewing angle. The work presented in (Goedeme et al., 2005) is capable of recovering the depth of

vertical lines in panomaric images. The geometry of straight lines in 3D are recovered in (Smith et al., 2006) using

a perspective camera. However, the use of free-form curves that are typical of the outlines of trees and bushes has

yet to be demonstrated. The detection of more complex features is also more computationally expensive.

The approach presented in this paper is best classified as an appearance based approach to route following. A

related area of research is visual homing where a robot is to return to a reference position when it is initialised at a

nearby position. This can be achieved with a simple feedback mechanism without geometric reconstruction of the

environment. One of the first to address this problem is Collett (1992). The basic idea is to take visual snapshots

at the home/reference position, find the displacement of features in the current visual scene with the reference

snapshot and then move in a direction that reduces the average feature displacement. This basic algorithm and its

variants can be proven to be globally convergent provided that the feature associations are correct. Insects appear

to employ this strategy for navigation (Srinivasan, 1998; Judd and Collett, 1998). The route following problem

is then decomposed into a series of reference positions such that visual homing from one reference position to

the next is effectively route following. This is a valid solution but it is less than ideal. The algorithm in (Argyros

et al., 2001) is representative of most visual homing methods where image features need to be associated between

current and reference images. However, feature association is difficult when occlusions and lighting variations are

considered. A more fundamental issue is that the direction of movement at any one time cannot be proven to be in

the direction of the reference position, even when the final position is convergent towards the reference position.

It is therefore difficult to ensure a smooth trajectory while servoing. Recovering the essential matrix (Svoboda

et al., 1998) between the current and reference image yields a homing vector in the direction of the reference

position (Booij et al., 2007; Goedeme et al., 2005). But this approach implicitly recovers feature depth and should

be classified as a SLAM method.

Our approach is similar to that of Matsumoto’s ‘View-Sequenced Route Representation’ (Matsumoto et al., 1996,
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2000b, 1999, 2000a) in the sense that the basic premises for convergence are the same and both use cross-correlation

for image matching. However, the approach presented here is provably convergent and robust against occlusion and

lighting changes in outdoor environments. In contrast to most existing works in the literature that are often not

accompanied by adequate experimental results, this paper presents a comprehensive set of experimental results.

IV. APPEARANCE BASED ROUTE FOLLOWING

A. System Overview

Fig. 2: System Overview

MECSE-8-2007: "Robust Appearance Based Visual Route Following for ...", A. M. Zhang and L. Kleeman



6

Figure 2 shows the overall system architecture. Route following consists of two phases: route teaching and

autonomous route following. During the teaching phase, an operator manually drives the robot from the starting

location to the end location. Manual teaching is an intuitive method for humans to communicate to the robot

important information regarding the route. For example, the operator may choose to avoid parts of the footpath

because it is frequently flooded, make pedestrians more comfortable by keeping to the left/right of the foot paths, or

slowing down the robot when it is approaching a blind corner. These are otherwise difficult concepts to communicate,

particularly in an outdoor environment. During this teaching phase the robot captures a dense video and records

the odometry readings. Reference images are then selected, processed, transformed into Fourier domain and stored.

The autonomous navigation phase starts by initialising the robot at the starting point. A new image is captured,

pre-processed, then matched against a few reference images in front and behind the current estimated location of

the robot along the route. Results of matching provide both a new estimate of the robot location along the route

as well as a relative orientation estimate of the robot’s current pose with respect to the reference images. A robot

steering command that zeros this relative orientation achieves convergence towards the path. Theoretical basis for

convergence is established in the next section. Each component in Figure 2 is covered in the subsequent sections,

namely: image pre-processing; image cross-correlation; along route localisation; relative orientation tracking and

robot steering. Experimental results are presented in Section V. Section VI discusses possible future work and

Section VII draws some concluding remarks.

B. Convergence Analysis

(a) Lateral displacement error (b) Orientation error

Fig. 3: By zeroing the difference between the angles θm and θA, the correct behaviour of rotating clockwise in

both cases is achieved even though the two sources of errors cannot be distinguished.

The basis for convergence is illustrated in Figure 3, where the route is a straight line along the x-axis. Robot
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pose where reference images are taken is in blue and the current robot pose in red. Angle to feature are designated

θm and θA for the current and reference robot poses. The robot steers to zero the difference θm − θA. Figures 3a

and 3b show that lateral displacement error and orientation error cannot be distinguished. But both cases result

in a clockwise rotation that would increase θm to match θA which is the correct behaviour for convergence back

onto the route. It is obvious that orientation errors can be corrected by correcting θm to match θA. A convergent

behaviour under lateral displacement however, requires a more indepth analysis.

Assuming the presence of only lateral displacement as illustrated in Figure 3a. To ensure convergence towards

the reference route the following condition must be met: θA > θm when v > 0. The proof is trivial. Since tan is

monotonic, the following inequality needs to be proven:

tan (θA) > tan (θm)

⇐⇒ y0

x0
>

y0 − v

x0
(1)

Further restricting features to only the forward facing 180 degrees, i.e. x0 > 0:

y0 > y0 − v

⇐⇒ v > 0 as by definition (2)

This result can be generalised to any number of features by calculating their average:

1
N

N∑
i=1

θi
A >

1
N

N∑
i=1

θi
m (3)

where N is the number of features. Because each θi
A > θi

m is true, the inequality in Eq. 3 is also true. Convergence

is therefore preserved. The algorithm’s behaviour under displacement along the x-axis is analysed next.

Fig. 4: Along route displacement
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Figure 4 shows the robot with displacement along the x-axis only. By inspection, it is obvious that θm > θA

if the feature is above the y-axis and θm ≤ θA otherwise. The desired condition is that the average θm is equal

to the average θA because the robot is already on the right path and it simply needs to travel straight ahead. This

condition could be met if the distribution of the features are symmetric about the x-axis. i.e. the biases in θm cancel

out. However, this is not a valid assumption in reality. A novel, provably convergent algorithm that deals with this

situation is presented next.

Fig. 5: Along route displacement

Consider Figure 5 where displacement in both axes are present. In order to obtain convergence in these cases,

two reference poses are utilised. Referring to Figure 5, if a virtual reference point α is added between reference

points A and B, then the configuration is equivalent to that of Figure 3a, for which convergence has already been

proven. The angle of the feature at the virtual reference point is then:

θα = tan−1

(
y0

x0 − u

)
(4)
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However, without access to feature location (x0, y0), an approximation for θα is required:

d

du
θα =

y0

(x0 − u)2 + y2
0

let: r =
√

x2
0 + y2

0 , x0 = r cos θA, y0 = r sin θA

⇒ d

du
θα =

r sin θA

(r cos θA − u)2 + (r sin θA)2

=
r sin θA

r2 + u2 − 2ru cos θA

=
r sin θA

r2
(
1 +

(
u
r

)2 − 2
(

u
r

)
cos θA

)
if u � r then:

d

du
θα ≈

sin θA

r
(5)

Thus, the gradient d
duθα is approximately constant if the distance between the reference images are small compared

to the distance to the feature. The angle θα can then be approximated by a linear interpolation between the boundary

conditions θA and θB :

θ′α = (1− u)θA + uθB (6)

where θ′α is the approximation and u ∈ [0, 1]. Setting the virtual reference point as the origin reduces the robot

offset to only in the direction of the y-axis. This situation is identical to that in Figure 3a for which convergence

has already been proven. Thus, it has been shown that:

(i) in the reference images, if only features in the forward facing 180◦ field of view are used;

(ii) and that the distance between reference poses are small compared to the distance to the features;

then convergence towards the reference route is guarantied. Condition (i) is numerically analysed in a simulation

where reference A is placed at (0, 0), reference B at (1, 0) and the virtual reference at (0.5, 0). Features are placed

uniformly along a semi-circle centred around reference A. The largest difference between θα and its approximation

θ′α is recorded for each radius of the semi-circle. Figure 6 is a plot of the maximum approximation errors against

distance-to-feature from reference A. The graph clearly shows an asymptotic reduction in approximation errors as

the distance to features increased. When features are at a distance of 4 times the separation between references the

largest error falls to below 0.5 degrees.

Note that the robot control algorithm minimises the difference between θm and θ′α:

θm − θ′α = θm − ((1− u)θA + uθB)

= (1− u)θδA + uθδB (7)

where θδA = θm − θA and θδB = θm − θB . This implies that the measurement image is to be compared against

reference images A and B to obtain θδA and θδB . But A and B are not compared against each other to explicitly

recover θ′α.
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Fig. 6: Maximum approximation error at virtual reference point as a function of distance to feature from reference A.

Curved sections of a route can be divided into straight line segments where the convergence analysis presented

above applies. Linear interpolation between references also serves to smooth out robot motion when the route

contains sharp curves.

Simulations have also been conducted to directly verify convergence. Similar works in the literature ignore the

effect of displacement from reference images along the direction of the route. Only a single closest matching

reference image is used to find the relative orientation in (Matsumoto et al., 1999). Simulation results using the new

algorithm is compared with the method used in (Matsumoto et al., 1999). The simulated route to follow is a straight

line. An initial lateral offset was imposed to demonstrate convergence. For simplicity cumulative odometry was used

to decide the location of the robot along the route. Robot dynamics are not simulated. Figure 7 shows simulation

results from a symmetric feature distribution. Robot trajectory using the algorithm in (Matsumoto et al., 1999) is

shown in black and the proposed algorithm in blue. As expected, there is very little difference in the behaviour of

the algorithms under a symmetric feature distribution. Trajectories under asymmetric feature distribution is shown

in Figure 8. In this case the new algorithm clearly provides smoother motion and at no instant is the robot heading

away from the reference route.
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Fig. 7: Symmetric feature distribution. (a) Red points indicate feature locations. Black crosses are the reference

poses. (b) Robot trajectory using the proposed algorithm is in blue and that of the algorithm in (Matsumoto et al.,

1999) is shown with black crosses.

C. Image Pre-processing

Identical image pre-processing steps are applied to both reference and measurement images. Input colour image

is first converted into greyscale (colour information is unstable under changing lighting conditions). The panoramic

image is then “unwarped” (i.e. remapped) onto the azimuth-elevation coordinates. Matching measurement and

reference images at varying orientations involve only a shift along the azimuth axis in the unwarped images,

whereas an image rotation is needed if matching was performed in the original image. An example of the original

colour image and its unwarped greyscale image is shown in Figures 9a and 9b respectively, where horizontal axis is

azimuth and vertical axis is elevation. Vertical field of view is restricted to [−50◦, 20◦]. The panoramic mirror used

has the profile given in (Chahl and Srinivasan, 1999). While it has the advantage of offering constant resolution in

elevation, there is no single effective view point. However, as an appearance based method, no geometric constraints

are placed on the imaging system.

Robustness against lighting variations is a difficult problem in outdoor environments. It is made even more

challenging by the fact that the teaching phase takes place only once, while subsequent autonomous runs can take

place under a wide variety of lighting conditions. There is no opportunity to learn the appearance of the environment

under differing lighting conditions. The burden is then placed on a good heuristic image pre-processing method

to remove lighting variations as much as possible. It has been observed that lighting changes generally affect

relatively large regions of the scene as a whole, such as shadows from buildings which generally cover large areas.
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Fig. 8: Asymmetric feature distribution. (a) Red points indicate feature locations. Black crosses are the reference

poses. (b) Robot trajectory using the proposed algorithm is in blue and that of the algorithm in (Matsumoto et al.,

1999) is shown in black.

This observation motivates the use of ‘patch normalisation’ which transforms the pixel values as follows:

I ′(x, y) =
I(x, y)− µ(x, y)

σ(x, y)
(8)

where I(x, y) and I ′(x, y) are the original and normalised pixels respectively, µ(x, y) and σ(x, y) are the mean and

standard deviation of pixel values in a neighbourhood centred at (x, y). A neighbourhood size of 17 by 17 pixels

has worked well in the experiments. Figure 9c shows the result after patch normalisation is applied to Figure 9b.

Edges can be seen to be preserved and details are brought out in areas with low contrast. However, in areas of near

uniform intensity, pixel noise and video compression artifacts are greatly emphasised, as is evident in the lower

central portion of Figure 9c. This noise is randomly distributed and does not affect the performance of the system.

Patch normalisation exhibits behaviours similar to that of a high-pass filter. Low frequency components, such as

shadows that affect large areas, are removed while the high frequency intensity transitions are preserved. The size

of the neighbourhood determines the low frequency cut-off threshold. The values µ(x, y) and σ(x, y) are calculated

efficiently using integral images of pixel sums and squared pixel sums.

D. Image Cross-Correlation

This section addresses the problem of measuring an orientation difference between the current image and the

reference images. Ground surface along the route is assumed to be locally flat such that the radial axis of the

panoramic vision system is perpendicular to the ground plane. The elevation difference between matching features

is small because the distance-to-features are large compared to the distance between reference images. Orientation
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(a) Original image

(b) Unwarped greyscale image

(c) Patched normalised

Fig. 9: (a) Original colour image. (b) Converted to greyscale and mapped to azimuth-elevation coordinates, where

the azimuth-axis is horizontal. (c) Patch normalised to remove lighting variations, using a neighbourhood of 17 by

17 pixels.

difference between reference and measurement images is therefore only a shift along the azimuth axis. This shift is

recovered using Image Cross-Correlation (ICC) performed efficiently in the Fourier domain. Let θ denote azimuth

and φ elevation. The frontal 180◦ field of view of the reference image serves as the template, i.e. θ ∈ [−90◦, 90◦].

Let the search range be ±θsrch such that the measurement image is limited to the angular range [−90◦−θsrch, 90◦+

θsrch]. Because only a 1D cross-correlation along the azimuth axis is performed, each row in the image is transformed

into Fourier domain separately. Reference image is padded with zeros to the same size as the measurement image.

MECSE-8-2007: "Robust Appearance Based Visual Route Following for ...", A. M. Zhang and L. Kleeman



14

If the measurement image is Nφ by Nθ pixels, then the Fourier domain image consists of Nφ sets of 1D Fourier

coefficients, each of a single row. The algorithmic complexity for a single image is O(NφNθ log Nθ). Convolution

in spacial domain is equivalent to multiplication in Fourier domain:

λ =
Nφ∑
i=1

Ri ∗M i

⇒ F{λ} = F


Nφ∑
i=1

Ri ∗M i


=

Nφ∑
i=1

F{Ri} · F{M i}

⇒ λ = F−1


Nφ∑
i=1

F{Ri} · F{M i}

 (9)

where λ is the ICC coefficients, Ri and M i are the i’th row in the reference and measurement images respectively, ∗

is the convolution operator and F{•} is the Fourier transform operator. Eq. 9 states that each corresponding row of

the measurement and reference images are multiplied in Fourier domain. The results are then summed column-wise

followed by an inverse Fourier transform to obtain the spacial domain cross-correlation coefficients. Complexity

for the multiplication in Fourier domain is O(NφNθ) and for inverse Fourier transform is O(Nθ log Nθ). Fourier

transforms for the reference images are calculated offline after the teaching run and stored. The complexity of

a complete ICC is thus O(NφNθ log Nθ) + O(mNφNθ) + O(mNθ log Nθ) where m is the number of reference

images to compare against. This is significantly better than the complexity of ICC performed in spatial domain

which is O(mNφNθθsrch).

Convergence analysis in Section IV-B used the average angle to features. But the algorithm is still valid if the

average operator is replaced by the mode operator (i.e. the relative orientation that most features vote for). The

ICC is actually a mixture of both the average and the mode operators. The exact effects are difficult to model

but the overall effect is that it at least provides the correct sign for orientation correction. Alternatively, the cross-

correlation can be viewed as treating the entire image as a single feature. There is a number of advantages of

this approach compared with associating individual features as in (Tang and Yuta, 2002; Argyros et al., 2001;

Segvic et al., 2007; Booij et al., 2007). The choice of scale at which to detect individual features like points or

lines is particularly important. A multi-scale method is often employed, leading to increased computational burden.

Incorrect feature associations also need to be rejected. Image cross-correlation avoids both of these problems. There

is also no need to reinitialise tracking of temporarily occluded features. Additionally, the Fast Fourier Transform

(FFT) is extremely well developed. Fast and off-the-shelf implementations are freely available. This paper uses the

FFTW library version 3.1.21. The total time of performing FFT on a measurement image and comparing against

11 reference images took a total of only 2.3ms on a 2.4GHz Mobile Pentium 4. More timing results are presented

in Section V-E.

1Distributed under the GNU General Public License, http://www.fftw.org

MECSE-8-2007: "Robust Appearance Based Visual Route Following for ...", A. M. Zhang and L. Kleeman



15

Results from the convergence analysis in Section IV-B requires the distance-to-features to be large to guarantee

convergence. It has been observed that large sections of a typical route are along footpaths where the features in

front of the robot are much farther than features on the side. Based on this observation a weighting function is

multiplied with the reference image during the image preprocessing stage to de-emphasises features on the side,

i.e. a weight of unity at 0◦ azimuth and decreases to zero towards ±90◦. This heuristic has been empirically shown

to improve performance. A Gaussian weighting function has performed well in the experiments.

E. Along Route Localisation

Existing works localise the robot to the nearest reference image (Matsumoto et al., 2000b; Jones et al., 1997),

where a measurement image is compared to the current nearest reference image and the next one along the route.

If the next reference is a better match then the robot is relocalised to this new reference. This method is far too

sensitive to errors in image matching and does not provide position estimate in between two reference images. This

paper uses a Markov localisation filter (Fox et al., 1999) for along route localisation. The state space is only 1D

with the state variable being the distance from the starting point. Robot orientation is tracked separately with a

Kalman filter covered in the next section. The state variable is finely descretised at a uniform resolution of 7cm

per state. Separation between reference images are larger than the distance between localisation states and may

not be uniform. Selecting reference images is itself non-trivial. They should be allocated densely at turns or when

visual features are close to the robot. One possible selection method is presented by Matsumoto et al. (2000b),

where during the teaching phase, new images are compared with the last reference image. When the matching error

exceeds a certain threshold the new image is assigned as a new reference image. But the problem of selecting

reference images is a separate offline process and left as an open problem for future work. For the experiments

in this paper, a simple allocation method is used. Reference images are allocated with a maximum separation of

35cm and 5◦ rotation according to odometry. The localisation states being more densely descretised at 7cm per

state allows for robot position estimate in between reference images.

Markov localisation filter assigns a probability for each state. Filter update consists of two steps: prediction update

and observation update. Robot is assumed to follow the route closely such that odometry provides good estimate

of distance traveled along the route. Prediction update involves shifting the probability distribution along the route

according to odometry. Errors in distance traveled as measured by odometry is approximated by a Gaussian. This

error is modeled in the filter by convolving the states with a Gaussian kernel. Prediction update is only performed

when the distance traveled is larger than the distance between states. Since the “kidnapped robot problem” is not

one of the operation scenarios and that the robot is always initialised at the starting point, there is no need for global

localisation. Thus at any instant in time, only a local neighbourhood of localisation states centred at the most likely

robot location is considered. The probabilities of the rest of the states are assigned zero. Computational complexity

is therefore constant regardless of route length. During observation update, in order to obtain the observation

likelihood, ICC is performed on the measurement image against 11 reference images centred around the estimated

current robot location. Peaks are extracted from the ICC coefficients by detecting local maxima with a window size
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of 21 degrees, i.e. a peak is the highest value within a window of 21 degrees centre around the peak’s position.

For each reference image, the height of a single peak with a relative orientation value closest to that of the current

estimated robot orientation relative to the route determines the matching likelihood of that reference image. Because

the localisation states are denser than the reference images, each state is then given a score via linear interpolation

of scores of the reference images in front and behind that state. However, the ICC scores are only an indicator for

the actual observation likelihood. The actual observation likelihood is obtained by first normalising the scores such

that they sum to unity, followed by addition of a constant, and renormalisation. A larger additive constant has the

effect of reducing the confidence placed in the observations. This constant was experimentally determined.

F. Relative Orientation Tracking

Fig. 10: Robot under both lateral and along route displacement.

Figure 5 is reproduced here in Figure 10 for clarity. With reference to Figure 10 the robot’s ‘relative orientation’

refers to the difference between the robot’s current orientation and that of the virtual reference image, i.e. θm− θ′α,

where θ′α is the linear approximation of θα. The relative orientation is designated θδ . The control algorithm steers

the robot to zero this quantity. This section describes the tracking of θδ . A multi-modal tracker is not necessary

since the robot must make steering decisions based on the current best estimate of θδ . Route following will diverge

if the most probable mode does not track the true orientation. A Kalman filter is used to track θδ . Prediction and

correction updates are presented next.

Prediction update uses readings from odometry as follows:

θδ(d + ∆d) = θδ(d) + ∆θmsur(d + ∆d)−∆θref (d + ∆d) (10)
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where d is the distance from the start of the route, ∆d is the distance traveled since the last update, ∆θmsur(d+∆d)

and ∆θref (d+∆d) are the changes in orientation measured by odometry in the distance interval [d, d+∆d] during

the autonomous and teaching runs respectively. Change in robot orientation in a differentially steered robot can be

modeled as:

∆θ =
dR − dL

W
(11)

where dL and dR are the distances traveled by the left and right wheels, W is the effective wheel separation and

the variance is:

V ar(∆θ) =
V ar(dR) + V ar(dL)

W 2
(12)

Variance of a distance measurement is directly proportional to the distance measured:

V ar(dR) = α · |dR| (13)

V ar(dL) = α · |dL| (14)

where α controls the size of the odometry error.

Parameters such as effective wheel separation and distance per encoder tick change overtime due to loss of tire

pressure. These systematic errors could be calibrated prior to the experiments. Another type of systematic errors are

primarily caused by the changing ground surface characteristics along the route. eg. more wheel slippage occurs on

gravel than on concrete surfaces leading to larger turns being registered by odometry. Because the ground surface

characteristics cannot be predicted, these systematic errors cannot be compensated prior to the experiments. However,

they are repeatable when the route is traversed again. Due to their repeatability, these systematic errors canceled

out by the subtraction in Eq. 10. This is a distinct advantage compared to the geometric map building approaches

where the map would be biased by systematic odometric errors. Other sources of noise include uncertainties in

localisation along the route and the descretisation of localisation states. These are modeled collectively by choosing

an appropriate α in Eq. 13 and Eq. 14.

Observed value of θδ is obtained by evaluating Eq. 7, which is reproduced here for clarity:

θm − θ′α = (1− u)θδA + uθδB

where reference images A and B are immediately behind and in front the current robot location respectively,

u ∈ [0, 1] indicates the robot position in between A and B. The measurement image is compared against both

reference images using ICC. Each local maxima in the ICC coefficients is potentially an observation. One local

maximum from each of A and B that are nearest to the current predicted θδ are considered observations of the

quantities θδA and θδB . Evaluation of Eq. 7 then provides an observation of θδ . The observation needs to pass a

validation gate set at 95% confidence before being accepted for state update. A large number of variables effect

the uncertainty of the ICC local maxima, such as occlusion, lighting variations, pixel noise, visual contents of the

current scene and image distortion caused by wabbling of the mirror. These variables make accurate modelling of

the observation errors extremely difficult. Nevertheless, it has been observed that the shape of the local maximum,
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rather than its height, appears to be a reasonable indicator of the observation variance. A parabolar was thus fitted

to model its shape. A heuritic then estimates the variance as follows:

V ar(∆θmsur) = β · a2 (15)

where a2 is the second order coefficient of the fitted parabola and β an empirically determined constant. Problem

arises when the shape of the peak is very wide. The variance according to Eq 15 becomes large, resulting in

an increase in measurement likelihood. This is not desirable because a wide peak is unlikely to be the correct

measurement. Therefore an upper limit is imposed on V ar(∆θmsur). Parabola fitting also improves the resolution

of the peak position estimate.

Note that relative orientation tracking depends on good localisation along the route. It is particularly sensitive to

localisation errors while executing sharp turns due to the large orientation differences between reference images.

Thus, while making sharp turns, only the prediction updates are made and no observation updates take place. This

ensures that the robot’s location estimate moves smoothly along the route during the turn. Sections of the route are

labeled as “sharp turns” during the reference image selection step if a curvature threshold is exceeded. This is a

part of the reference image selection problem to be addressed in future work.

G. Robot Steering

The steering algorithm aims to zero the robot’s relative orientation using a proportional controller:

ω = −κ · θδ (16)

where ω is the robot’s rate of rotation and κ is the experimentally determined system gain that depends on the

system’s processing speed and the robot dynamics. A value of 1.5 has worked well in the experiments at a processing

rate of 4fps and the robot moving at 60cm/s in straight sections and 45cm/s at sharp turns. With a top speed of

60cm/s this simple proportional controller has worked well in practice.

V. EXPERIMENTAL RESULTS

As a consequence of the proposed approach being behaviour based, any improvement to the algorithm needs

to be tested online. The development process consists of conducting experiments which expose failure scenarios,

improving the algorithm, experimental validation, and more experiments that expose further problems. Only the

latest version of the algorithm has been described in Section IV. The effect of any improvement to the algorithm

can only truly be verified with online experiments, under as many different lighting conditions as possible. It is

clearly infeasible to repeat all the experiments after any improvement was made. So the procedure was to first

apply the improved algorithm to the recorded experiments that exhibited a specific failure scenario to verify that a

better behaviour is achieved. The improved algorithm is then applied to recordings of other successful experiments

to ensure that the behaviour does not deviate drastically from the old algorithm. This offline verification process

significantly increases the confidence in the improvement not introducing other failure modes. Although some
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experiments presented in this section used earlier versions of the algorithm, they nevertheless validate various

aspects of the final version. Differences in the algorithms will be explicitly stated for each set of experiments. The

cumulative length of the experiments conducted is over 20km.

A. Robustness of Relative Orientation Measurement

This set of experiments demonstrates the robustness of the ICC method for relative orientation measurement

against occlusion and lighting variations in outdoor environments. In order to isolate the causes of failures, prediction

update based on odometry information in orientation tracking was ignored, making the system more sensitive to

errors in relative orientation measurement between images. A modified Kalman filter was also used, the details of

which is presented in Appendix A.

Fig. 11: Teaching route

Figure 11 shows the teaching route in the Monash University Clayton campus. Figure 12 shows the environment

at corresponding spots along the route. The green circle and the red square are the start and end points. The route

is 416 meters in length. A total of eight successful runs were made under differing lighting conditions. Cumulative

odometry for these experiments are shown together in Figure 13. Odometry of the teaching run is shown in black.

The routes’ end points are indicated with asterisks. Errors of the end points are in orders of tens of meters.

The experiments were performed during the summer months with very strong sun light. All images in Figure 14

were captured from the same position. Figure 14a is the reference image, Figures 14b, 14c, 14d, 14e and 14f were

at different times of sunny days, and 14g was on an overcast day. These images illustrate significant changes in

appearance typically associated with changing lighting conditions in outdoor environments. The patch-normalised

unwarped images of Figure 14 together with their ICC results against the reference image are shown in Figure 15.

Units of x-axis are in degrees where positive values correspond to the reference image shifting to the right relative

to the measurement image. Global maxima are clearly visible near 0◦ in the ICC coefficients. Note that the maxima

in Figure 15e and 15f benefit from the parabola fitting mentioned in Section IV-F in obtaining a higher resolution

estimate on the position of the maxima.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12: Visual appearance of various points along the route.
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Fig. 13: Cumulative odometry. Units are in meters. Reference run is drawn in black. End point of routes are indicated

by asterisks.
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(a) Reference, Sunny, 2:29pm

(b) Sunny, 11:51am (c) Sunny, 2:26pm (d) Sunny, 2:55pm

(e) Sunny, 4:49pm (f) Dusk, 7:31pm (g) Cloudy, 9:20am

Fig. 14: Variation in lighting conditions. All images were captured at the same position.

Figure 16 shows sections of the autonomous runs containing large amounts of occlusion by pedestrians. The

figures show the reference images (top, showing only the frontal 180◦), measurement images subjected to occlusion

and the ICC coefficients. Lighting changes are also quite significant as can be seen in Figure 16e, where the outline

of the building in the right half of the image is obscured by over saturation. Yet cross-correlation is robust enough

to recover the orientation in each case.

B. Experiments Under Various Lighting Conditions

Algorithm robustness against lighting changes is tested more exhaustively here than the previous set of experi-

ments. The 322 meters long teaching route is shown in Figure 17. Figures 18a and 18b show changes in lighting

conditions at two locations along the route. Table I summarises the 23 successful experiments conducted over a

period of 9 days with each at a different time of day or weather condition. Sunny days were given greater sampling
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(a) Reference, Sunny, 2:29pm

−40 −20 0 20 40

(b) Sunny, 11:51am

−40 −20 0 20 40

(c) Sunny, 2:26pm

−40 −20 0 20 40

(d) Sunny, 2:55pm

−40 −20 0 20 40

(e) Sunny, 4:49pm

−40 −20 0 20 40

(f) Dusk, 7:31pm

−40 −20 0 20 40

(g) Cloudy, 9:20am

Fig. 15: Robustness of image cross-correlation (ICC) against lighting variations. Patch-normalised unwarped images

in the left column. ICC coefficients against the reference image in the right column where units of x-axis are in

degrees and positive values correspond to the reference image shifting to the right relative to the measurement image.

Global maxima are clearly present in the ICC coefficients despite the dramatic changes in lighting conditions.
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−40 −20 0 20 40

(a)

−40 −20 0 20 40

(b)

−40 −20 0 20 40

(c)

−40 −20 0 20 40

(d)

−40 −20 0 20 40

(e)

Fig. 16: Robustness of image cross-correlation (ICC) against occlusion. Images of each sub-figure: frontal 180◦

of reference image (top); measurement image; ICC coefficients where x-axis is in degrees and positive values

correspond to the reference image shifting to the right relative to the measurement image. Global maxima in the

ICC coefficients correctly recover the relative orientation between reference and measurement images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 17: Route for comprehensive testing under various lighting conditions.
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(a) (b)

Fig. 18: Top image of each column is the reference, taken at 14:29. Images were taken from experiments carried

out at 9:14, 10:20, 11:17, 12:13, 13:13, 15:03, 16:47 and 17:34.

density because they generate a much greater variety of visual appearances as the position of the sun changes with

time. These experiments used the modified Kalman filter in Appendix A for relative orientation tracking.

C. Ground Truth

The ground truth experiments provide quantitative measurements on the accuracy of the algorithm. Ground truth

is difficult to obtain in this case because the experiments should be conducted in realistic urban environments.

Real-time kinematic GPS used by Royer et al. (2005) provides enough resolution but is inapplicable here due to

buildings occluding GPS signals. Accurate laser range finders used in land surveying were also considered. But

line-of-sight is difficult to maintain. The chosen method is to mark the robot position at waypoints along the route

then manually measure the deviation at these waypoints during autonomous runs.
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Exp. Time Weather Exp. Time Weather

1 9:14 Sunny 13 13:13 Sunny

2 9:24 Sunny 14 13:21 Partly Sunny

3 10:11 Sunny 15 13:44 Sunny

4 10:20 Partly Sunny 16 13:57 Overcast

5 10:38 Overcast 17 14:54 Sunny

6 10:43 Sunny 18 14:55 Sunny

7 11:17 Sunny 19 15:03 Sunny

8 11:47 Sunny 20 15:21 Sunny

9 12:13 Sunny 21 16:47 Dusk

10 12:40 Sunny 22 17:34 Dusk

11 12:49 Overcast 23 17:57 Dusk

12 13:11 Sunny

TABLE I: Weather conditions and time of day during which experiments were conducted for comprehensive testing

of robustness against lighting variations.

The route followed is the same as in the previous set of experiments. A new teaching run was made to allow

for ground truth measurements during which the robot was made to stop at regular intervals along the route.

Robot positions at these waypoints were marked on the ground. During the autonomous phase, the robot stopped

at these waypoints such that positional errors with respect to the ground truth could be measured. No waypoints

were allocated in the middle of turns because stopping the robot during the autonomous phase changes the robot

dynamics, hence interfering with the robot control algorithm and could potentially decrease the accuracy of route

following. The algorithm used here is the final version as described in Section IV. A total of 9 experiments were

conducted. Table II summarises the results. The direction of the x-axis is perpendicular to the route. Because the

localisation states are descretised at 7cm between states, this limits the accuracy along the y-axis. Lateral deviation

(x-axis) is more representative of the algorithm’s accuracy. Reference sequence was captured at 12:37pm on a sunny

day. The fact that Table II shows no clear correlation between the amount of deviation and the weather conditions

or time of day demonstrates robustness against changing lighting conditions.

D. A Longer Experiment

The route is visualised in Figure 19. At 732 meters in length this is the longest route in the experiments. The

robot travels through a variety of environments including big open spaces (Figure 19f), footpaths predominantly

surrounded by vegetation (Figure 19c), and non-uniformly distributed features (Figure 19d where a building facade

is close by on one side and the other side is open space). A total of 7 experiments were conducted, of which 5

were completely successful. The rest two experiments completed 730 meters but failed at 2 meters before the end

of the route just before entering the robotics laboratory. One of these failures was caused by the slow response of

the camera automatic gain control leading to the inside of the laboratory appearing completely saturated. The other
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 19: A route 732 meters long.
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Exp. No. Time Weather |x| (cm) |y| (cm)

Max. Avg. Std. Dev. Max. Avg. Std. Dev.

1 16:20 Overcast 10.0 4.6 4.8 24.0 8.4 10.4

2 16:46 Overcast 11.0 5.1 5.5 24.0 9.3 11.2

3 11:20 Overcast 7.0 4.5 4.0 22.0 7.3 9.0

4 12:46 Sunny 6.0 3.4 3.0 20.5 8.5 10.1

5 14:28 Sunny 14.0 5.8 5.0 26.0 8.2 9.9

6 15:22 Sunny 13.0 4.9 4.8 25.5 7.9 9.4

7 15:37 Sunny 11.0 4.6 3.7 23.5 8.4 10.1

8 9:38 Sunny 21.5 8.4 7.4 25.5 9.3 10.9

9 10:27 Sunny 20.0 8.1 6.7 16.0 9.1 10.1

TABLE II: Error during autonomous route following compared with training route. Where |x| is the magnitude of

the lateral offset from the route at the waypoints and |y| is localisation error along the route.

failure is suspected to be caused by clutter in the laboratory. Again the experiments were conducted under various

lighting conditions (Figure 20). Tolerance to occlusion is demonstrated in Figure 21 where a market was setup in

the square in front of the campus centre during the autonomous run.

(a) Reference

(b)

(c)

Fig. 20: Examples of changing lighting conditions.

E. Timing and Storage Requirement

Below is a summary of system parameters and timing results:

• Reference image size: 70 x 180 pixels ( = 70◦ elevation FOV, 180◦ azimuth FOV)

• Measurement image size: 70 x 256 pixels (i.e. ±38◦ azimuth search range)
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(a) Reference (b) Measurement

(c) Reference (d) Measurement

Fig. 21: A market was set up in front of the campus centre that was not present in the teaching run.

• No. of ref. images to compare against for along route localisation: 11

• Computer configuration: 2.4GHz Mobile Pentium 4, 500MB memory

• FFT library: FFTW2 version 3.1.2

• Image preprocessing: 7.2ms per image, including conversion to greyscale, unwarping and patch normalisation

• Image cross-correlation per measurement image: 2.3ms, including FFT of measurement image and com-

paring against 11 reference images

Because the reference images are pre-processed and stored as Fourier coefficients the overhead is only disk

access. So image pre-processing plus cross-correlation takes only 9.5ms per measurement image. There are still

much optimisation possible with image pre-processing. Offline processing runs at 60fps. During the autonomous

phase, with every measurement image recorded in a video, online processing runs at 4fps. At this processing rate

the robot is able to travel at 60cm/s in straight sections and 45cm/s at sharp turns. All experiments were conducted

at 4fps with logging of every measurement image.

With reference images at a resolution of 70 x 180 pixels and allocated at 35cm intervals, a 1km route requires

36MB of storage space. This requirement is considered low by contemporary storage capacities.

VI. FUTURE WORK

An obvious improvement to the route following system is a more adaptive method of reference image selection

that allows for more closely spaced reference images when the environment becomes enclosed, eg. when moving

in cluttered indoor environments. Following the route in reverse is also useful and can be easily achieved. Another

useful ability is being able to merge routes and create a topological map that would allow the robot to travel from

any starting point to any end point, greatly increasing its flexibility.

2Distributed under the GNU General Public License, http://www.fftw.org
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VII. CONCLUSION

A vision based navigation system capable of repeating a route previously taught under the control of a human

operator in outdoor environments has been presented in this paper. It uses a much simpler algorithm compared to

existing visual SLAM methods, made possible by exploiting constraints specific to the route following problem.

The algorithm is appearance based and provably convergent. The system has shown a high level of robustness

against occlusion and lighting variations in an extensive set of experiments. The longest route was 732 meters in

length and was successfully repeated in 7 experiments.

APPENDIX A

A MODIFIED KALMAN FILTER

As stated in Section IV-B, the state observation for the relative orientation Kalman filter is the quantity:

θ̂δ = (1− u)θδA + uθδB

where 0 ≤ u ≤ 1, θ̂δ is the observation on the tracked state θδ , θδA and θδB are the relative orientations of the

measurement image with respect to the reference image behind and in front of the current robot location respectively.

It is possible for only one of θδA and θδB to be erroneous. In this case, the correct observation still provides useful

information and should be used for filter update. Thus, a mechanism that is capable of independently rejecting

observations from reference A or B is required. When both are accepted, the filter update should have the same

outcome as using a single interpolated observation. Observation update using a single interpolated observation is

as follows:

S = HPHT + Rα

W = HPS−1

V = θ̂δ − θδ

θ′δ = θδ + WV

P ′ = P −WPT HT

where S is the observation likelihood, P the state variance, W the filter gain, V the measurement innovation and

H the observation matrix which is unity in this case since the state is directly observed. Rα is the observation

variance and it is given a fixed value in this version of the algorithm. The innovation can be broken up into two

parts:

VA = θδA − θδ

VB = θδB − θδ

V = (1− u)VA + uVB
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Substituting into state update:

θ′δ = θδ + (1− u)WVA + uWVB

Grouping the weightings (1− u) and u together with W produces new weighted filter gains WA = (1− u)W and

WB = uW . State variance update can be broken up into two parts as well:

P ′ = P −WAPT HT −WBPT HT

The interpolation weights can be treated as a scaling on the observation likelihood:

WA = HP

(
S

1− u

)−1

WB = HP

(
S

u

)−1

The validation gate then makes use of these scaled observation likelihoods:

e2
A = V T

A

(
SA

1− u

)−1

VA

e2
B = V T

B

(
SB

u

)−1

VB

If both observations pass the validation gate, then update is made with a single interpolated observation. If only

observation from reference A passes the gate then the following update is made:

SA =
1

1− u

(
HPHT + Rα

)
WA = HPS−1

A

VA = θδA − θδ

θ′δ = θδ + WAVA

P ′ = P −WAPT HT

Likewise if only observation from reference B passes the gate:

SB =
1
u

(
HPHT + Rα

)
WB = HPS−1

B

VB = θδB − θδ

θ′δ = θδ + WBVB

P ′ = P −WBPT HT
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