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Abstract—Location awareness remains the key for many po- positioning where some WSN nodes know their positions
tential future applicatio_ns of di_stributed wireless ad-hac sensor  ejther through manual deployment at a fixed location or using
networks (WSNs). While location of a WSN node can be esti- gjohq| positioning System (GPS) devices and designated as

mated by incorporating Global Positioning System (GPS) deees, - .
it is not possible at present to embed GPS receivers in everyode anchor nodes (also called seed nodes.in [17]). The position

considering the cost and size of these devices as well as fronPf general nodes is to be determined either from the distance
optimization point of view. However, a small number of WSNs of the node from the anchor nodes (range estimation) or the
nodes called anchor nodes are able to resolve their locatiagither angle of the node with the anchor nodes (bearing estimation)

through fixed deployment or using GPS receivers and thereby Beacon nodes are also sometimes used for this purpose,

provide the reference framework for localization of other nodes. L ! . . )
The measurement devices in individual nodes are often err@ous with in [1S] they being differentiated from anchor nodes as

for tiny WSNs nodes and hence robustness is a major issue for generally requiring some fixed infrastructural deploymiemt
localization. In this paper a theoretical localization framework localization [4, 25].

in the presence of noise is postulated, which achieves acete WSN localization is a very challenging task since as al-
positioning compared to the existing theoretical and stastical ready alluded there are significant device constraints lwhic

estimation methods employing a theoretical minimum number . t the desi biecti f tical loadiim
of four anchor nodes. The paired measurement localization Impact upon the design objectives for any practical 1o

(PML) strategy is evaluated through simulations under varous Scheme. A generic set of design objectives therefore irclud
noise conditions and environmental modeling; and practichy [15, |19,137]:1) independence from anchor node placement,

verified by a test-bed implementation with real motes. The reults  ji) being supported by a low density of nodes, with a minimal
corroborate the improved positioning as well as robustnes®f  qative density of anchor nodeidi) robustness - tolerance to
PML for ad-hoc wireless sensor networks in presence of noise . . L L
node failures and range erroig) energy efficiency - minimal
computation, communication and support for sleep mode for
. INTRODUCTION maximizing battery lifetimey) simple measurement hardware

HE emeraence of small hardware devices that osséor both cost effectiveness and device size miniaturiratmd
limited cogm uting. communications and sensin pca g?)ssupport for distributed algorithms, for true ad hoc networ
puting, 9 p%[geration without any central coordination overhead.

bilities has been the core foundations for Wireless Sensol, respect to design objectiwg, range-based techniques
Networks (WSNs), with a diversity of application domains ; :
) . o : are far more suitable than bearing-based approaches as they
evolving from habitat monitoring and smart traffic systems : . o :
! . mandate either little or no additional hardware requirenten

through to surveillance and target tracking! [L1, 25].

upport the small form-factor of WSN devices though it is

A typical .WSN comprises nodes having a low powereaore erroneous than bearing-based estimations. Hence rang
processor with a small amount of onboard memory, a W|rele|§]s

. . easurement based positioning is focused in this paper.
transceiver and some battery powered sensors. This means th P 9 bap
certain inherent constraints on the networks design can |

distilled including,i) limited processing capabilityi) limited

As Chintalapudi et all[9] confirms, no single existing s@urc
Calization algorithm currently fulfils all the above dgsi
communication rangéij ) restricted battery lifetimdy) coarse objeptlves, with a review of ayallable localization algbrns
sensing potential ang low reliability in supporting miniature coming to the gverall gonclus.|on that acceptabl_e perfo_magn
cannot be satisfactorily achieved for all design objestive

nodes,e.g, form-factor of the WSN devices. bgcause of their conjectured fundamental limitation of ad-

coﬁggot?;-f::;F;Otf]:eof-nEﬁ:jCéenée?asgarggrgggttrﬁn:ogftnbL:]tR ¢ localization systems using only range-based measure-
! Ny devices, ments. Langendoen and Reijers|[19] further establishet tha

emplo.y_e.d which have greater proces§ing and Corﬂmunic"’lti(ﬁr(‘)salgorithm performed best in all aspects so providing the
capabilities, together with a more reliable power source. otivation for this paper, which presents Paired Measungme

Locapon awareness 1 V't.al for mgnyWSN applications Su(T[Bxalization (PML) that fulfils the aforementioned design
as routingl[2D)], and for achieving higher network secuti]l objectives under noisy conditions at a satisfactory lewaro
and energy efficient node managementi [39] as well as mal ers

next generation location based services. It will firstly be observed that under the precise condition

Positioning can t_)g of two types such as relative positioniq}q equidistant sensors, range measurement errors beceme in
and absolute positioning. This paper focuses on abso“é‘ﬁnificant for location estimation. Based upon the obdarma

Dept. of Elec. & Comp. Systems Engg. an exact formulation of hyperbolic locus of the source node
Monash University, Clayton, Melbourne, Australia. will be found under the assumption of equal noise presence



for a pair of anchors. Solution of hyperbolic location is ron As the PML method is independent of how range estimation
trivial and two methods will be presented for closed forns performed, the various merits and demerits of the ranging
solution under different conditions. Also, a refined andén methods are examined to provide generic context, with apeci
locus of the source node will be found for PML under specifiemphasis being given to their suitability for WSN applioas.
measurement noises for a pair of nodes that provided another

approach to PML localization. Simulation and experimental
results corroborate both the effectiveness and robustoes
the new PML algorithm. Geometric approaches to localization are based on accurate

The PML approach follows from theoretical improvementdﬂistance measurement from anchor nodes that already know
the original noisy locus and also provides closed form smiut their positions. Triangulation is the basis of these teghes
Hence, it is computationally highly efficient compared thest and is generally sub-divided intd) lateration, where the
robust localization approaches which either employ anrerr@nge measurements are used fram- 1 sensors for am-
refinement phase_[21] or require very low measurement noiinensional location estimation; afigl angulation which uses
as a precondition of accurate operation| [22]. Among randee angle of arrival (bearing) measurements combined with
measurement techniqueReceived Signal Strength (RSS) distancel[24]. Bearing estimates necessitate sophisticar-
the simplest approach as most radio communication deviéesna arrays that are unsuitable for integration at theiséqu
come with built-in RSS indicator (RSSI) hardware, thougferm-factors and energy-levels of current WSN nodes [9], as
this is also the most error prone range estimator. PML Veell as rapidly exacerbating the localization accuracyesnd
both simulated and practically verified for RSS-based rangeisy measurements_[31].
measurements to highlight its potential for general WSNs Range estimation can be achieved by any of the following
localization. It is independent of node placement and sateal metrics,i) Time Of Flight(TOF), ii) Time Delay Of Arrival
for randomly deployed node scenarios. The communicatighDOA), oriii) Received Signal Streng(RSS). TOF is calcu-
cost is minimized as it is able to work with as low as foulated from the start and receive times of a signal transorissi
independent or three pairs of anchors and hence supportinghe cricket location-support_[26] system, this is ackiv
a low anchor node density concomitant with energy presdéy an RF and ultrasound signal combination supported by
vation. Therefore, PML is truly distributed as all nodes capeacon nodes that simultaneously transmit both an RF and
compute their locations upon receipt of adjacent anchayearultrasound pulse, with the receiving node computing the TOF
measurements without any central coordinating intereenti using the time difference of arrival between these two digjna

The remainder of the paper is organized as follows: Sd& [26]. This approach can achieve high accuracy (1-2%
tionMprovides a review of location estimation methodsjleh error of the transmission range) over a communication range
Sectiorll presents the RSS based range measurement méfiet — 6, which is significantly lower than the nominal
and Sectiofil 1V discusses error characteristics used for \ASNradio range of sensor platforms such as mica motes, which
one of the main objective of this paper is to present loctiima has a range of tens of meters [9]. TOF requires a dense
under erroneous conditions. Sectibh V provides the pairg@de deployment because the ultrasound signals usually onl
measurement based hyperbolic locus formulation whichds tRropagate up ta0—30 feet [15]] and the relative anchor node
basis for PML localization. It also provides three alteiveat density needs to be commensurately high. This approach also
ways for PML solution incorporating the basic principle.eThrequires additional sensing and communications hardveare f
simulation and practical performance of PML approach Igtrasonic ranging.
thoroughly examined in Sectiodi VI ardd_VIl. Secti@@_VIll The TDOA between two nodes is calculated from the
provides some conclusions. individual time of arrival measurements and thus avoids the
need for transmission of the originating timel[32]. Whilasit
suitable for broadband sources, the technique is verytsansi
to clock synchronization between the nodes [8].

While WSNs localization is a relatively new research topic, Amongst the various measurement approaches, RSS is the
localization per se in the signal processing discipline &lw cheapest alternative in terms of hardware and communitatio
established, with there also being strong linkages in iobotrequirements and is readily measured from the RSSI ciscuitr
for robot localization and tracking purposes. This sectiga4] in the receiver. Range estimation is then performed
explores some relevant strategies that exhibit the peatlettti using a straightforward path-loss model for RF propagation
be practically applied in a WSNs context to satisfy the sithrough the space. There has been considerable interest re-
design objectives delineated in Sectldn I. cently in RSS-based localization because of its suitgbilit

As mentioned previously, only range-based techniques aoe WSNs applications as exemplified by the SpotQN [16],
considered in this paper. These can be broadly classified italamari[37] and RADARL|2] systems. However, RSS-based
two categories -geometricand topological [Q] approaches. range estimations are error-prone as the transmit powersvar
The former performs lateratiorl [19] for localization fromwith battery power level and the receiver characteristing/ v
range measurements of either three or more anchor nodeilely, even for similar nodes. Based on hardware variation
while the latter exploits topological and neighbourhoodi@o it has been shown that distance estimates between pairs of
relationships for location estimation from the relativetdnces different transmit-ters/receivers can vary by as muchBas%
between each node and anchor nodes. [37]. Fine calibration |[16] 37] is thus needed for effectual

. Geometric Localizations

Il. REVIEW OF RELATED WORKS



RSS-based usage, while some researchers have postulatédcomprehensive analysis of location error sources, models
that this fundamental RSS limit may be insuperahle [9and effects is provided inl_[34]. Certain algorithms which
Through the introduction of PML in this paper it is showrare aimed at improving localization performance do address
that it is possible to employ multi-hop localization fromisyp erroneous measurements, such as those_inl[21}, 22, 29]. In
RSS measurements to achieve much superior performaf¥j for instance, a two-phase positioning system is intro-
than original triangulation which is basis of most localiaa duced with the initial location estimation performed by Hop

algorithms. TERRAIN, which is an algorithm similar to DV-hop. An
_ o iterative refinement process is subsequently applied iardm
B. Topological Localization Methods improve the position estimate. Ih_[21], an iterative leagtaye

The three earliest approaches to topological localizati¢h-S) approximation is introduced for gradual error refiresrh
were Convex Optimization [10], GPS-less [4] and GPS-fres® both Hop-TERRAIN and ILS are specializations of the
[E]. Convex Optimization finds the location by a set of conveiterative refinement step df [19]. 10_[22], the localizatiprob-
constraints that require centralized high-end processihie lem has been solved using a 2-D graph realization approach
GPS-less estimates the location as the centroid of neagifilar to the Euclidean distance measurement of [23] vhih t
anchor node positions, so mandating high density deploymeélimination of ambiguous localization caused by graph flips
of anchor nodes for moderate ac-curacy. GPS-free in cantrBging attained using robust quadrilaterals. The locatimat
incurs high communication costs in order to establish divela error is minimized at the cost of a higher node degree, which
coordinate based location system. Another topologicagean implies increased anchor node density and poorer locilizat
free method is the Approximate-Point-In-Triangle (APITS] due to its inability to manage ambiguous circumstances.
which applies a test as to whether a particular node liesénsi In summarizing, range-based localization techniques in-
a set of triangles formed by anchor nodes. The intersectigvitably incur measurement errors for WSN applications, so
of these triangles gives an improved estimate of the locaocise cancellation is a major focus of this paper. In the next
tion, though this requires adequate anchor node density @&gtion an RSS-based range measurement model is examined
sufficiently powerful computing resources to compute adl thbecause it is the most expedient metric for localization.
triangles. Hence none of these techniques satisfies thgrdesi
objectives completely. 1. RSS MEASUREMENTMODEL

Langendoen and Reijers_[19] selected three algorithms
i) Ad-Hoc Positioning [[23];ii)) N-hop multilateration [[30];
andiii) Robust Positioning by Savarese et ALl [29]; as broa
fulfilling the design objectives, though no single algamithas
been shown to be the best in every aspect.

There are three common phases in these different topologiwhere the path loss describes the large-scale signal attenu
cal localization methods, nameilyrange estimatiorij) initial ~ ation while traveling through a medium and fading represent
location estimation andi) iterative refinement. small-scale signal variations caused by multipath profiaiga

The ad-hoc positioning technique described inl [23] iglative movement among receiver and surrounding objects,
similar to distance-vector (DV) routing, where the dis@ncand signal transmission bandwidth.

(either hop or range) from an anchor node is flooded in

a clontrolled manner thrqughout the network and each noﬂ\_e Free Space Path Loss Model

maintains a minimum distance table to the anchor nodes.

The DV approach can apply the hop count (DV-hop), or This.model gives .the RSS signal attenuation for both

either the actual (DV-dist) or the Euclidean distance b&ansmitters and receivers that have an u.nobstructed)ﬁne—.

tween neighbouring nodes. DV-hop and DV-dist are simil&ght (LOS) path between them. The signal strength still

except that the former approximates the distance per hop 4Rluces by some exponent of distance, with the Friis free

converts the hop distance to a range measurement. All DYRace equation for fthe attenuatgd received power under the

based algorithms however consistently overestimate tngera '€ Space propagation model being expressed as [27]:

while the Euclidean approach provides superior accuracy, P.GiGN2
f . tTtr

though often it underestimates the range, at the cost otegrea Po=——5 (2)

communications and lower error resiliencel[19]. (4m)2d*L

The iterative refinement phase can be achieved using clas#; is the received signal strengtie power), P, andG, are
sical Kalman Filter concepts _[28], probabilistic refinemerthe transmitted power and antenna gain respectizglyis the
[12] and Maximum Likelihood (ML) estimation [33], althoughreceiver antenna gaim, is the distance between the receiver
none of these approaches achieve significant improvemeiatsd transmitter antennag, is the system loss facto.(> 1)
particularly for erroneous RSS measurements. Statist&al and )\ is the wavelength in meters.
finement techniques tend to be data driven and inherentty ina The Friis model predicts?,. for signals that in addition
curate, with the lower error bound being given by the Cramen LOS conditions also fulfil the far-field distance () or
Rao Lower Bound (CRLB)L |8, 24] and unsuitable when onlffraunhofer region from the transmitting antenna implying
a small number of data samples (range measurements) thee receiver distance is much larger than both the signal
available. wavelength and transmitter antenna linear dimension.riglea

'Received signal strength in an idealistic physical environ
drlr;/ent is usually represented by the following formula:

RSS= Sending Power Path Loss+ Fading (1)



@) is undefined whed = 0, so assuming a Fraunhofer regiorsystems, while the third and fourth errors are caused by opti
and measuring the signal strength at a reference distancemization issues, which are both problem and model specific.
dy, the signal strength at any distance can be found from: The final error is as a result of either spatial or proximity
) collaboration of nodes being used in the WSN localization.
do The log-distance path loss model is now modified for
P.=PF|— d>dy>d 3 . . .
" 0 ( d ) ’ == ®) consideration of error sources in the measurement as fellow

The Friis model is effective for the ideal propagation
scenario though a more pragmatic model is mandated for r@al Practical Log-Distance Path Loss Model

environments, such as that presented in the following @ecti The ability to appropriately model an error source can

improve the overall performance of an algorithm that uses th
B. Log-Distance Path Loss Model model and assists as well in understanding the challenges in

This exploits the basic tenet of free space path loss tHPre quantitative manner. This paper focuses specificatiyiu
signal strength decreases with a power of distance bueratRSS measurements in its robustness evaluation because it is
than following the square of distance attenuation it emsplo#?mh the most convenient and error-prone metric for WSNs

an environmental path loss exponentor modeling different 10calization. _ o
kind of medium as shown in the following equation. The main error source in RSS based range estimations

is path loss, which is inversely proportional to the dise&anc
n raised to some path loss exponent. A simplistic model that
P x (@) P,.(dBm) = Py(dBm) + 10nlog (@) (4) addresses only path loss will fail as highlightediin! [32hcsi
d d multi-path fading and shadowing also contribute signifiyan
The bars in[[4) indicate the ensemble average over all pod§iwards RSS range errors. These errors are specially penitnin
ble values forl, while n varies between 2 to 6 depending upoi? urban environs due to reflection, scattering and diffoact
the environmental conditions covering free-space throtagh from surrounding objects and buildings. It was reported in
very dense urban environments where propagation is sgvel$?] that placing a node.5m above the ground triples the
affected by buildings. transmission over a ground node placement, under the same
In the following section a short discussion on error charaite-of-sight conditions.
teristics is presented to assist understanding of therdiffe =~ The decibel (dB) error distribution for RSS is modelled as
error sources and noise characteristics together withr thé@ro-mean Gaussian and is given by:
potential impact upon PML.

10nlog [ — | — 10nlog <—) = Xo (5)
IV. WSNS ERRORCHARACTERISTICS ANDMODELING do do

Earlier presented signal propagation based range estimati \yhere is the actual range is the measured range between
models are mostly idealistic and isotropic assuming sign@e transmitter and receiveX, is the zero-mean Gaussian
attenuates equally at different directions. However, th&& anqom variable with standard deviatienandn is the path
presence in reality is anisoptropic and variable with timgss exponentd, represents an arbitrarily close reference
and direction. Radio propagation is reported to be irregulgisiance to the transmitter where the original transmiigdal
on different directionsL[38]. In this section at first podsib is gvailable to the receiver without any path loss. Frain (5),

error sources are depigted. Subs_equently .prgctical P88 Ihe RSS error can thus be formulated as follows:
modeling by incorporation of statistical variation and Rad
Irregularity Model (RIM) [38] is presented. RSSprr(d) =d—d=d (10% _ 1) ©6)
A. Error Sources Variations in the transmitter and receiver charactesdiice
. . : e Eo manufacturing non-uniformities are another source ajrer
In [34] five major sources of error were identified thal : . .

: o ; and require calibration. However, due to the scale of a WSN,
impact upon WSNs localization performance, namely: o . . L )

it is not always possible to calibrate individual nodes,rsthie

1) Measurement Calamari system [37] for examplmacro-calibration is used

2) F|n.|te precision This is a dynamic calibrating method that is implemented by a
3) Objective function related generalized parameter estimation approach to error rmiaimi
4) Intractable optimization tasks tion, though it is not suitable for devices that exhibit difint

5) Localized algorithms characteristics in different frequency bands.

Measurement errors arise due to limitations in the sensing
technology, phenomena instability and environmental enois . .
Of particular importance in this regard, is receiver caibr C- Radio Irregularity Model
tion as their characteristics can vary significantly, witheo  The radio irregularity model is devised for consideratién o
approach to minimizing this error source being dynamignisotropic propagation through the communication medium
calibration. The second error is omnipresent in all computi by the adjustment of path loss component as follows:



RSS= Sending Power RIM Adjusted Path Los$ Fading
(7)

where RIM Adjusted Path Loss Path Loss xK;, K;
representing the path loss adjustment coefficient forithe
degree of the propagation and calculated randomly acaprdin
to the Weibull distribution which fits well with practical
variation of RSSI|[38] in different directions.

The next section presents the new PML strategy for range-
based measurements in WSNs under erroneous range esti-
mations. To our knowledge this is a unique approach to
WSNSs localization, to embed error cancellation within the

mathematical formulation itself to achieve superior lecal (a) Ideal 2-D triangulation scenario where

ization performance. The analytical formulation avoids an linear form LOPs are found from the cor-

. . . . . . . responding two circular LOPSI[5].

iterative refinement, which is computationally expensivnel a

requires range estimation with the ensuing communications L

overhead from as many devices as possible in order to achieve | Same Linear LOP

satisfactory performance. In direct contrast, PML marslate AmT~d o~

theoretical limit of four or three pairs of non collinear &ioc 7 R ~

node for localization and hence minimizes communications

overhead significantly. / \

| |

V. LOCALIZATION IN THE PRESENCE OFNOISE \ |

Initially the ideal case is considered where noise effexs a
simplified by assuming equal noise presence and equidistant

|
anchors from the source. An exact formulation is then ddrive A —__ — )." ~__-"
for the Locus Of Position(LOP) of source node given a pair M
of anchors. The formulation is non-linear and two closed (b) LOP from equidistant sources in presense of equal
form solutions are presented next before introducing aroth noise.
approach that works by the refinement of the paired LOPs. Fig. 1: Depiction of observation 1.

For WSNs localization, it is also assumed that the surface is
planar and all methods are two dimensional (2-D), though the
proposed theory is sufficiently generic to be easily exténdgne passing through two intersecting points of the circula
to three dimensions. o ~ LOPs. This line does not represent the actual locus of the
In the ideal scenario where no noise is present, it &urce node as it will be clarified later. However, following
feasible to calculate the exact node location using onlgethr[g] this line is refered aginear Form LOPin the subsequent
range measurements through triangulatioh [5]. Two ranggcussions. In figurEl 1; and L, are determined from the
measurements can result in two solutions correspondingcdigcular LOPs corresponding to anchor node pajss, (p2)
the intersection of two circular LOPs. The third measureimeaind ¢, , ps) respectively, with the intersection point, (y) of
resolves this ambiguity. This approach will now be augmeintg,; and L, denoting the actual location of the source node.
for location estimation in the presence of noise using the Assume now that due to noise, the range readinggfor
following analysis. _ . _ (z1, 1), P2 (z2, y2) and ps (z3,y3) are corrupted to give
Observation 1:Assuming there is a node with range mearespective LOPs of radii; = 1 + &1, 72 = 72 + & andig =
surements from two anchor nodes that are equal and have eqyal¢;, wherer;, r; represent the observed and actual distance
error components, it is shown below that the locus of pas#tiopetween the!” anchor node and source node respectively and

for that node (as the error components vary) is a straigbt lig; is the measurement noise at anchor nodée circular LOP
whose equation is independent of range measurements. can then be expressed as:

The 2-D source localization problem with three sensor
nodes is shown in Figuld IJa). . (ri + €)% = |pi — plI? (9)
The circles surrounding anchor nodes
p1 (x1,91),p2 (T2,y2) and ps(xs3,y3) denote the LOPs wherep = (z,y) is the node position to be determined.
obtained from the individual range measurements for eachEquating the circular LOPs fop; and p2 using [®), L;
node. Ideally, the LOPs surrounding anclias given by, becomes:

i = lpi = pll* = (& —20)* + (y — v:)?) (8)

In ideal noise-free conditions, any two such circular LORS ¢
. . . . . 1 2 2 2 2
be equated to simplify to a linear form representing a shriaig 2 (HP2|| —pillF + (r1 + &) = (r2 + &) )

(w2 —m)x+ (Y2 — 1)y =
(10)



where the right hand side becomes independent of range— r; = c.
parameters,.e, measurement valueg; and 7, whenever
T = T2 = 1+ & = rp + &. One particular case is (x_ 9)2_ y _<¢ (12)
equidistant anchor nodes and equal noise presence when the (
above condition is fulfilled.

The importance of this observation lies in the fact that it

eliminates the signal energy dependent parameters uneer as o e
" ) N T TR ) cqular node
sumed conditions completely, which possess noisy characte . T e LT = - - - Observed range
.. . . LT RS - - - Actual range
istics and are also both device and environmentally depgnde Cinear Form Lo

80 L NI Hyperbolic LOP

= Anchor node 60 N

‘ Regular node [ - i
'
'

- = = Observed range > ' J
40 |
—-—Actual range Voo
Linear Form LOP w ;

Hyperbolic LOP

= Anchor node
35 o 4 Regular node
100 PR . - = = Observed range
-~ ~ —-— - Actual range
Linear Form LOP
Y Hyperbolic LOP

= Anchor node

4 Regular node
- - —Observed range
—-—-Actual range
Linear Form LOP
Hyperbolic LOP

= Anchor node
______ 4 Regular node
(b) - ~. - - = Observed range
150 e . - = Actual range
Linear Form LOP
Hyperbolic LOP

Fig. 2: The hyperbolic and linear form LOP of a regular node
from range estimates by a pair of anchors under equal noise
assumption[ (@) The general case when two observed circular 50
LOPs physically intersedt_{b) The case when circular LO&s d
not intersect due to noise and underestimation of the ranges

100

-50

Based upon the above observation and assuming only the oo
equal noise presence, it is useful to explore paired measure
ments rather than individual ranges to mitigate the efféct o
noise. As the difference of the range estimates equate talact
difference for equal noise preseneed, 72 — 71 = ro — 1),
the LOP for the target node is found by the locus of positiorEg. 3: The hyperbolic and linear form LOPs for unequal noise
maintaining constant difference from the pair of anchorpresence[ (h) The general case when two observed circular
Hence, the hyperbolic LOP of the target node can be foun®Ps physically intersedt.{o) The case when observedleircu
independent of the noise parameters as shown in f[ure 2 a@Ps do not intersect due to underestimation of the ranges.
formulated below: The case when observed circular LOPs do not intersect but

overlap completely due to overestimation of the ranges .

©

\/(x —z)’ + (y—y2)? — \/(x —21)’+ (y— ) The hyperbolic LOP represents the exact LOP for a pair
— (Fa—71) (1) of anchors under the equal noise assumption. The linear form
LOP does not truly represent the locus of source node under
After algebraic manipulations, it takes the general hypemoise unless both ranges to anchor nodes are equal despite it
bolic form as follows forp; = (0,0),p2 = (a,0), and use in [5] as clarified in figur&l2. Two possible cases could



arise due to equal noise presenagthe circular ranges have of equal noise cannot be held for any arbitrary selection of

physical intersection anlg) the circular ranges do not have anyairs and hence alternate ways to solve such LOPs for paired

physical intersection. In both cases, hyperbolic LOP i abl measurement is now formulated.

represent the original target position whereas linear fo@®®

deviaf[es from target position.sig.nificantly. As establighthe A. PML with Single Reference Anchor

LOP is the first step in localization, any error present as thi ) )

step could aggravate the result significantly and hencerfindi ©han and Hol[7] provided closed form least square solution

a LOP closer to the original source node is fundamental {gf Non-linear hyperbolic LOPs by linearizing with refecen

achieving high accuracy localization. to a single measur.eme.nt node. Analogous.to thglr appr.oach
It is also crucial to compare the hyperbolic and linear for closed form solution is found for PML using pairs having

LOPs for unequal noise components in individual measur@-common reference anchor in them. The solution is simpler

ments as in reality this assumption can be void. In thelf#an [7]'s approach as the effect of noise is considered earl

general situations three possible cases could adsehe [N the paired measurements formulations.

observed circular ranges have physical intersectinthe Let rgpresent the difference in t_he observed ranges for

observed circular ranges do not have any common intersectf'chor pairg(i, j). In case of equal noise presence it follows:

region; andc) One of the observed circular ranges overlap

completely within the other circular region. TG TG T
These three cases are shown in figlre 3 where figurg 3(a), After squaring and rearranging, (13)
shows the hyperbolic and linear form LOPs for noise ratio r? = r% +2r5ry + 7“]2
% of 2 while [J(€) shows the LOPs for noise ratio of 4. '

Hence, using the above the actual circular LOP can be

igure[B(d) also shows that for completely overlapped range. <formed as follows:

the hyperbolic formulation turns into elliptic formulati@s the

coefficient ofy? in @ changes sign as the range difference

becomes greater than distance between the anchassaj. (x—2)* + (y —9)* = (r)* + 2rgr; + (1) (14)
It is evident from the figures that in all the three cases of | )

unequal noise presence, hyperbolic formulation is bettited Using [14) for pairs(p;, p;) = (px,p1) and (p, p1) and
than linear form and the impact of noise is less detrimengifPtracting the second from the first,

on hyperbolic LOPs than it is on linear form LOPs.

- (xk — :Ul).T - (yk - yl)y - (Tﬁ - Tﬁ)ﬁ
. , =3 (r)* = ()® ~ llpell? + lpal®) - (15)

80 Linear Form LOP
Hyperbolic LOP

v where|px|? = (22 + y3). The above formulation represents

N Y a set of linear equations with unknownsy andr; for all
P combination of two pair of anchors having notdé common.

2 s Letz;;, y;; represent the difference —z;, y; —y; respectively,

C; represent the** combination andn represent the total

number of combinations witll; = {(px,,p1), (P1;,P1)}. The

(@) (b) system of linear equations for these combinations can be

. . . . _concisely written as follows:
Fig. 4. Comparison of equal noise effect on hyperbolic anc? ISely Wi W

linear form LOPs. Anchor nodes are placed at (0, 0) and (O,
50) while source node is placed[af](a) (0, 27) (b) (0, 45).
where,

AX =B (16)

A 2-D plot for noise componentg;,&; is shown in
figure [4(@),[(d). The hyperbolic LOP maintaigs = &
throughout its path and hence, the noise plot is linear pgssi Ten Yen Uk i
through the origin. The noise relationship is non-linear fo

X : . A=_ | % Yen T \Tkil T Thi

linear form LOP and as the range difference increases, the = )

linear form LOP performs worse as its distance from actual

source locus is increased further. T Ypo T (T,ﬁ - 7‘1"1)
Solving the nonlinear hyperbolic equations is difficult.

Moreover, existing hyperbolic localization methods prxte (r—=)2 = (r—~)2 — ||pw |12 + o1, |2
. . . . . Fal i k1 Py
by linearizing the system of equations using either Taylor- T 1| (r=)2 = (r~)2 — Pk, + [pi |12

series approximatiorl[13, 36] or by linearizing with anatheX = |y | , B = 3 k2l l21 ? 2
additional variable [|7]_14}_385]. However, while linearigin 1 )
~ ] : (re=)? — (r=)? — [Pk 12 + o, |2

works well for existing approaches it is not readily adajgab
for proposed paired approach as linearizing is indeedmgniri Form > 3, the system of equations can be solved. However,
with an arbitrarily chosen hyperbolic LOP. The assumption is related tar, y by @). For pairing and equivalence &f—



7 = r; —r1, observed ranges are always used in the equations
and thus the system of equations are essentially independen
of relationship betweenz( y) andr;. This is also verified by
iterative refinement of; where7; is modified by obtainee,

in successive runs. The results show no difference in jpositi
estimateqz, y) for successive iterations.

The equal noise assumption cannot be applied to any arbi-
trary selection of pairs while it is quite reasonable fortas
observing near equal ranges to have equal noise components.
The selection of pairs with near equal ranges from a single
reference anchor, may not be feasible for low anchor dessiti
This is the motivation for the next solution approach.

Fig. 5. Estimating the locus of node position under noisy
B. PML with Equal Range Noise measurement conditions.

Let P; = (pi,pj) be an arbitrary node pair, whegg =
(¢1,y}) andph = (x%,y3) represent anchor positions of theD, in Figure[$. For non collinear anchor node paifs,and
i*" pair. Using [ID) and assuming equal and constant noise will have a physical intersection poidit; = (45, yi;)-
presence for a particular instarice &, = & = &, the equation  Another line L, parallel toZ; can be found as follows by
for LOP L; using anchor paiP; is found from [ID) as follows: modifying the term2¢ (r{ — i) with —k (ri — %), wherek
is an arbitrary positive constant.

(25 —at) o+ (vo —yi)y = - o
i i i i i i p—w) e+ (Y2 —vi)y =
5 (B3I — 1931+ (14)° = (15)* + 26 (1} = 13) Eosd)er@h-y=
an S (IpslE = ot + () = (r5)* =k (rf — 1) )

The equation becomes linear in termsagfy and¢ if the  The original LOPO; will then pass between lines; and
noise is represented by a single paramétar all pairs. This [, as the constants have opposite signs. A similar argument
is obviously a ;lmpl|flcat|on but it has the advantage of gel_rappnes toL; so that the parallelogram bounded by the lines
able to wor_k with anchor nodes as few as three for selecti ! Li, 0;, L; will have an aspect ratielR = (r}frf) asl,
of three pairs from them. Thus, this method only extends the ‘ ‘ T3 .
equal noise assumption from two to three nodes for providitg2¢ (ri — %) distance away fron®; andL; is 2¢ (T{ - 7“%)

a closed-form solution and hence is a competitive approadistance away fron©,; as evident from the difference in the
over others in many instances. constant terms iMf{17). ThaR of the parallelogram bounded
by the linesO;, L;, O;, L; will have exactly the same aspect
ratio so indicatingl;;, I;j andI to be collinear points, where
, o T, denotes the intersection point of linés and L.
The assumption of equal range noise is a simplification antd . I .

A i : .. Hence, the equation of the actual LOR;I,; passing
while it will be shown later in the results section that it |§ . . . i,

hroughI is found from the two intersection poink; and

superior to triangulation most of the cases, occassiorially., ) . .
performs worse. In search for a localization approach thIa'ﬂ' which are available from equation5 [17) ardl(18) and

can give consistently better estimates than basic triatign, 2nal0gous equations for LOP; and L. o _

a locus refinement approach is now presented for arbitraril]iél-oPs obtained from all possible combination of pairs

placed anchors. ( i,]Ej) from three pairs(P1,P2,P3) can be written in the
A refined and better approximation to linear form Lo@©Ncise form as follows:

is found from two imprecise linear form LOPs assuming

T2

C. PML with Refinement of the Locus of Positions

equal noise presence in each pair and for specific instance HX=C (19)
of measurement as follows. where,
Figure® shows the ideal scenario where the position of the
node to be determineg, and the two respective linear form Y12 — Y12 — (@12 — Ty
LOPsO; andO; are obtained from any two arbitrary anchor H— e e — X _ |*
node pairsP; andP;. Y13~ s B yl’
The equation forL;, L; can be found using[{17). For y23—y;3 — (23 —wég
specific measurement instangds constant and.;, L; vary
from the ideal noise free LORS;, O; by the extra constant Ty (Y12 = V1o ) — ¥12 (712 — 219
terms of 2¢ (ri — ré) 26 (r] — rJE respectivgly. Crucially C = |20 (15— vls) — s (15 — s
their slopes remain unchanged (Left hand side[df (17)), and

these are shown by the solid linés, L; parallel toO; and Toz (Y23 = Ya3 ) — Y23 | T23 — T3



The solution of [IP) gives the least square estimate of dllgorithm 1 Anchor Node Selection

possible LOPs using observatigh 1 and above mentioned LORor all pair of neighboring anchor node®

refinement procedure. Update average neighbor range) for calculating the
The locus refinement formulation assumes noise to be current average range estimate;

present in the formulae. However, if the noise is absent the Calculate rank’g) for the pair (pi, p;);

two pointsI;; andI;; would be very close and during the  if (p; p;) is collinear with any previous selected pair

calculation process whenever pairs having distancen are then
observed the estimated location is found as the mean of these Rep|ace the previous collinear pair with current pair
two. else

The linear form LOP obtained from each sensor pair must be if Number of selected pait Required number of pairs
linearly independent so they do not represent either theesam then

or a parallel linear LOP. Such sensor pairs are referred to as Add current pair to selected pairs

mutually independent, so a key objective is to identify such else

sensor pairs, where each sensor receives equal signajtstren Replace the worst ranking selected pair with current
PML may be intuitively viewed as localization exploitingdre pair

ing measurements, as LOPs effectively denote a directional end if
line. It is known that angular measurements are consistentl end if
more accurate compared to TOF range measurements and iand for
[€] a combination of range and angular measurement has
been shown to achieve better localization results, progidi
a valuable insight as to why the LOP refinement furnishes

TABLE [: Simulation Parameters

. . . . . Parameter Range of Values
bgtter Ipcatlon estlm_atlon. ThIS.WI” be corroborated by th Radio Frequency TdBm
simulation and practical results in Sectiod VI dndlViII. Transmit Signal Strength 1dBm

Receive Signal Gain 0
. ) Reception Sensitivity 91dBm
D. Selection of Anchor Pairs for PML Reception Threshold 81dBm
. . . Radio Placement Height 1.5m
It is apparent from observatiod 1 that the existence of Ambient Noise omw
a pair of sensors having equal distance from the source Temperature Factor 0
. . : . . . . P Temperature 290 deg
nqde is vital for location gstlmatlon, with .thIS prereqtesi SNR Threshold 10.0
being relaxed and generalized by LOP refinement approach. Path Loss Exponentaj 2.0 —2.2
Observatiofill highlights the significance of pairing thehamc Ricean Fading parameteK( 6dB
nodes for better noise cancellation and a better selection éi':efg‘osri;ememagepl gof)nli 500m
process can result in considerable improvement. With maict Number of nodes 200 — 1000

range estimations there is no explicit way to determine st b

possible pairs following the observation. However, thegean

estimation ratios can be used as a rough measure of adherettosen from available anchors and then pairs of anchors are
observatiofl which is the basis for the following empiriigal chosen using Algorithrill 1. This selection process can be run
defined ranking criteria. The ranking criteria also consdeon-demand only when anchor positions are either changed or
the closeness of the anchors. If the two anchors are too clasgicipated and given the relative small percentage of @nch

to each other they might have the best range estimation ratimdes, this will incur negligible cost.

while effectively they are like two anchors placed at the sam Finally, as the new PML method itself is an analytical
place and hence providing no additional redundancy to hedpproach, the order of computational complexity (1)
localization. Utilizing, the above mentioned two prin@plthe once node selection has been completed. The communications

following empirical ranking criteria is introduced. overhead including bandwidth and transmission costs fdeno
~ location estimation are minimized as only three pairs ohanc
_n < 1 > (20) nodes need to transmit the range estimates localization of
72 \ [[P1p2|| a node. The simulation performance of PML will now be

where 7, and 7, are the observed range estimates fghalyzed.
anchor node pairgy, p2) such that/; > 7, and ||p1p2]| is
the Euclidean distance between two anchor nodes. The pairs V|- SIMULATIONS AND MODELING RESULTS
having lower rankings¥) are chosenAlgorithm) following Java-based simulation tool Java in Simulation Time (JiST)
the ranking criteria. The complete node selection algorith developed by Barr et al.li[3] is used for discrete event
given as follows. simulation of WSNs as it provides a transparent, efficient
Algorithm [ searches all the available anchor nodes ofamd standard simulation framework. Using JiSTSealable
particular node so its computational complexityigvailable Wireless Ad Hoc Network Simulat¢8WANS) has also been
anchor nodé) if an exhaustive search is applied. Typicallideveloped which is highly scalable and memory efficient and
nearest anchors would have strongest signals experiencngable for WSNs simulation scenarios having a very large
least noise and interference. Hence, the nearest 6 andrsnamber of nodes. SWANS has been shown to scale for up to



10

1 million nodes while populans2network simulator supports typical IEEE 802.11b signal parameters were used, namely
only a few hundred nodes and GloMoSim (another popularradio frequency of 2.4GHz, transmit signal energy of 15
ad-hoc wireless simulation tool), supports up to 10000 sodelBm, receiver signal threshold of -91dBm and bandwidth
of 1MHz. The simulator also modeled the free-space path
loss and fading. The complete set of parameters is listed in

500—._ L . . . TabIe[II

R T P Using SWANS a multihop localization using RSS measure-

oroa et T ments has been developed employing multihop propagation

sor . L o techniques similar to Distance Vector routing. Each node

wop T + 5% Anchors maintains a table of anchor nodes and their range estinsation
Sawp LT ' e ggl%fﬁh: by summing up multihop range estimations to the anchor. The

w0f T “T. e s .. v RegularNodes nodes exchangelello Packetsto exchange the anchor table

ol e E ! . T with neighboring nodes at second interval. The receiving

ol L o e e nodes compute the range to the sender and updates its anchor

wof A ' table from the received information. If there is already atrye

for an anchor it updates the range only if it is smaller than th

X (m) current entry.

The multihop distance estimation itself introduces addii
error other than the RSS range estimation error as it approx-
imates the range of an anchor by the minimum multihop
distance to that anchor. Hence, multihop range estimations
always give an over-estimation of the range and the minimum
of all multihop distances are always chosen for a specific
anchor.

Each of the regular nodes estimates its location from the
anchor nodes and their measured ranges at 3 seconds interval
Following observatiofll1, the anchor node selection protess
algorithmd has been developed to form pair of nodes that
maximize the pair-wise equivalence of the RSS parameter,
so PML operates in a totally distributed manner with nodes
independently computing their location without incurriagy
central communications overhead.

The performance of the proposed technique is simulated us-
ing a random deployment of 200 nodes as shown in fifidre 6a.
The interconnection diagram as the connections are made
using freespace propagation model is shown in fifiule 6b. The
variation of the RSS ranging error is achieved by manipigati
the environmental path loss exponentThe simulation is run
Fig. 6: A WSNs deployment scenario ab@0m x 500m field: on the same configuration of figuE@ 6 for the period of 60
[(@) shows the node distribution with anchors and regulaeeodseconds with simulation preparation runtime of 6 secontés af
marked in different colors for different percentages; dffid, which routing table becomes stable and statistics is deltec
shows the nodes as they are interconnected with each other.The localization performance under various conditions are

now described as follows.

The object oriented architectural clarity and standaré jav
|anguage support provided the key motivation for using the Localization Performance under Ideal Simple Path Loss
JiIST/SWANS tool to simulate PML for WSN node local-Model
ization. SWANS includes an implementation of the open Firstly, the impact of simple path loss model on localizatio
systems interconnection (OSI) model for the physical, dai analyzed with the path loss exponenbf @) being used
link, network, transport and application layers and so j@les and the corresponding performances of the triangulatiah an
a complete WSN simulation framework capable of modelinrgML approaches displayed in figuig¢ 7. The key evaluation
the real-world scenarios. The simulation testbed for PMhgis metric for localization is the estimation error extent cargul
JiST was constructed as follows. to the ranging error. In figurEl 7 anchor percentage is varied

WSNSs nodes were defined as independent objects associathile localization accuracy is plotted as the line graphhwit
with application, routing, networking, medium access ooint RSS range estimation error displayed in the shaded area.
(MAC) and radio entities and were deployed in a physical It is apparent from figurEl7 that PML depicted by diamond
environment represented by a field entity. All nodes wetagged solid line, provides a consistently better solutitam
created with the same configuration with the anchor nodéee triangulation approach. RSS error indicates the emes-p
being designated. To create a faithful WSN representatia@mce in the basic signal strength to range calculation andehe

(b)
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error presence in the range estimation and thus improving
the localization under noisy conditions significantly thesual
triangulation. Triangulation shows to perform margindiigt-

ter for average range error less tharbm as shown for
environmental attenuation coefficient af0. For all higher
error conditions PML performs consistently better.

B. Localization Performance under Different Fading Models
The robustness of the PML is analyzed by the simulation

of multipath fading channels following Rayleigh and Ricean
fading models|[27]. The former is typically applied to delser
the statistical nature of the received envelope of a flanfadi

&
IS
&

s - - . - e SRt E e T - - - .

-1~ Centroid 40
Triangulation Est.

@
&

~u- Centroid
_ Triangulation Est.

(by Nearest 6 Anchors) -8 E —

B ooy GRS signal for Non Line of Sight (NLOS) scenarios, while for

s Mean RSS Ranging Err. - 5 y Nearest 6 Anchors) 3 . i 8

" D[ SEMemssrmntn gl LOS conditions where a dominant component is present; the
N Al o P latter distribution is used [27]. The Rayleigh and Riciariseo

X}

component at any instant as measured by signal strength can
vary widely and so some filtering is necessary in order totlimi
its impact. For this experiment)0 Hz sampling frequency is

(d) 20% Anchor density. assumed with the noise averaged over this sampling interval

Fig. 7: Performance comparison between Triangulation, PML 1€ effect of multipath signal interference using Rayleigh
and Centroid localization for 200 uniformly distributed Ws ading distributions is presented figiie 8. The results stha

nodes in a500m x 500m field for varying anchor densities the impact of fading is minimized and PML consistently gives
using simple path loss model. better results than the triangulation approach.

o

2 2.05 215 22 2 2.05 215 22

21
Path Loss Exponent

(c) 15% Anchor density.

160 . 60

shown as shaded region in the chart. A clear trend is observer .| . ... S,

that for increasing RSS range estimation error the locitina w0 - (, ;” () B

error also increases. The centroid approach providesynear| g 7 tsnewesomcros O e e

constant estimation error for all node densities as it dags n ¢ ”

employ range measurement and applies the mean of the anchc? -

node positions around the source. o /
When n increases from 2 to 2.2 irf](4), the net effects T

are an overall increase in RSS error. For= 2, the error

is nearly zero when the simple path loss model is observed,

while for n = 2.2 the error is= 30 — 45m which corresponds

to measurement noise of nearly) — 75% of the average . wof e omos

communication range (hop distance) @&jm. For the same o g P T 2517 oy earests anchorsy

value of n, the RSS error decreases with increasing anchc Vaan RS Rangng ;< ] e parry g

node percentages though the difference betwiééh to 20%

anchor node is very small as expected due to the presende of

nearest anchors within the single hop distance for incngasi | .~ y

anchor percentages.
The PML performance degrades more gracefully than rang-

ing error and most of the time PML is able to achieve better

estimate than the average ranging error while trianguiati®ig. 8: Performance comparison between Triangulation, PML

performance follows the similar trend as of ranging erroand Centroid localization for 200 uniformly distributed WS

With increasing anchor percentages triangulation perémee nodes in a500m x 500m field for varying anchor densities

improves as the ranging error decreases an@@t# it shows using Rayleigh fading model.

to perform better than the ranging error. The PML always

performs much better than the ranging error and partigularl The urban LOS signal interference effect is modelled using

for higher ranging error it shows independence to anchRician fading distributions with one dominant signal andest

percentages. It suggests that better ranging technique eautipath components. The performance results for thisehod

improve the performance other than increasing the numlze presented in figufd 9.

of anchor nodes for WSNs localizations. In comparison with the simple path loss model results, it is
The centroid approach provides an upper limit on thevident that no significant difference in results are obesgrv

estimation error and it is evident from the graphs that PMior different fading models. It is due to the cause that noise

is able to estimate locations better than the average RiSSaveraged over 1 second interval as well as due to the

m)
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Fig. 9: Performance comparison between Triangulation, PML
(c) 800 Nodes.

and Centroid localization for 200 uniformly distributed WS

nodes in a500m x 500m field for varying anchor densities Fig. 10: Performance comparison between Triangulation, PM

using rician fading model. and Centroid localization for uniformly distributed WSNs
nodes in a500m x 500m field for varying node densitieds

with five percent anchor presence.
selection of nearest 6 anchors that are minimally affected

by propagation noise. However, it validates the supeyiorit
of PML over triangulation under realistic propagation misde
suggesting its applicability in real life scenarios oveisérg

approaches.
160, _ - - —m - - 60,
C. Localization Performance for Varying Node Densities e
_ 120 (by Nearest 6 Anchors) _ I Tna:lzjraen;n EASr:c e ’v
All the previous models were based upon the same nNOde su ooy N
deployment scenario. In Figutel10 the performance for diffe ¢ = g st
ent uniform node deployments is presented witth anchor & " L
node presence. The results for other node densities follow ¢ = 0
similar trend and validate the extendability of PML unddfr di e

21
Path Loss Exponent

(b) 10% Anchor density.

21
Path Loss Exponent

ferent node densities and deployment scenarios with agthiev _
(a) 5% Anchor density.

localization accuracy within the close proximity to the RSS
errors. Moreover, it validates that the proposed technigue

able to support a very low anchor densities as the numbero | +cues =~ 7 7 o e T
. _, _ Triangulation Est _,_ Triangulation Est.
Sensors |nCreases - g’m‘:‘reﬂ“mmrg ‘/,’ A35 (pbr\yA(\Agzz:esleAnchms)
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D. The impact of Radio Irregularities i, Sis
. . . . . ,’/ 10 v’/
All the previous simulations were performed using sphérica st o
radio propagation model which is not quite realistic propa- % s 22 : 22

5 21
Path Loss Exponent

(d) 20% Anchor density.
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gation model. The Radio Irregularity Model (RIM) proposed (¢) 15% Anchor density.

by [38] is shown to be a good model for incorporation into
simulation tools. The RIM has been implemented into JiSfrig. 11: Performance comparison between Triangulation, PM
for anisotropic adjustment of freespace path loss in daifier ahd Centroid localization for varying anchor node densi-
directions. The degree of irregularity parameter of the etodies with radio irregularity modelling that takes accourit o

is set at 0.01812 which is shown to be the most practical val@gisotropic radio propagation along different directions

for RIM [B38]. In Figure[I1 the comparative results for multi-

hop localizations for different values of path loss expdnen
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using RIM are shown which endorses the superiority of PMtorresponding to relevant anchor are updated if the current
localization under irregular radio propagation. range estimate from received packet is smaller or equal to
JiST provided a realistic simulation environment for eealu already found range. Received packets and range updates are
tion of localization performances under different RF caiodis tracked by a packet sequence number so that only fresh range
and propagation models. However, simulation results are abtimates are kept in the neighbor table. Triangulation and
ways questionable as simulations are performed in a céedrolPML approaches employing nearest 6 anchors according to
environment while in practical cases there are many unknowhe received signal strength are compaﬂal [32]. The node to
parameters affecting the outcome. Hence a practical vaia be localized is moved in different places and RSS data is
of the proposed approach is performed which is now describedllected for a period of three minutes for each placement.
The localization is performed realtime on the mote as well as
the signal strength data is sent to the base station for efflin
evaluation and verification of the data with obtained result

25 *  Anchor Node

= Actual Position

v PML Est. by Nearest 6 Anchors
PML Err. Extent

(a) Outdoor configuration with 10 motes. A single mote andwitsoden N .
platform is shown in the inset image. 15
= 1o N\

0 10 20 30 40
X (m)

m
*
7
*

Fig. 13: Experimental setup and PML Performance for outdoor
localization.

The experiment is performed in three different setugs:
outdoor open field configuratio) indoor single room setup
where each node is able to communicate with every other node

(b) Indoor configuration with 10 motes. Motes are placed gntke cubicle
separators as shown.

andc) indoor setup extending to three adjacent rooms where
some anchors are not within direct communication range of

Fig. 12: Images of indoor and outdoor experimental setup féte others. Figuré12 shows the indoor and outdoor exper-

localization using 10 motes.

imental photographs. The anchor node deployment schema

and localization performances employing PML for the three
environments are shown in figuled [3] 14 15 respectively.

VIl. PRACTICAL TESTBED RESULTS

An experimental WSNs testbed is created for the practicBhBLE 1 Outdoor Experimental Results for Triangulation
evaluation of the proposed approach. Ten Mot&iv [1] Tmoﬁvﬂg PML Estimations

. | Original Mean  Triang. PML PML PML
sky WSNs motes are used for the experiment. Eight motes Position RSS  Est. (Sing. (Eq. (LOP
are designated as anchor nodes, one is designated as unknown Rang-  Err. Ref.) Noise) Re-
node and moved in different places for its localization amel t e Err Err ‘::’;re)
last one is connected to a laptop for result aggregation. The (m) (m) (m) (m) (m) (m)
motes are placed in the same orientation so that directionall (1, 9) 16.07 1010.16 1460.70  18.88  14.72
propagation issues can be evident by the placement of tes g ggg ool 0o joar 1% 3%
mode in different positions. Every node maintains a table of 4 (17, 9 7.86 105540 899 948  1.94
neighbouring anchor nodes and their estimated ranges along (17, 17) 13.14  790.02 59.22 3.17 6.06
with the sequence number of the packet from which the range? ~ (17- 25) 1047 839.54 960 895 10.14
X . - (17, 41) 10.05 1409.52 18.06 1759  24.99
is updated. Every node emits a beacon packet broadcasting (25, 1) 1152 1180.80 2548  20.06 1161
its position (if it is an anchor itself), neighboring anchor 9 (25, 9) 8.00  697.57 49.88 7.90  18.61
positions, and estimated ranges every 5 seconds. Theiregeiv 19 gg %_3 ﬁg? lggg-gg 1:1%% ER T
node estimates range to the sender from the signal strength, (25 33 11.04 1286.28 2253 1498  18.42
and updates its neighbor table for the sender. Anchor nodel3 (25, 41) 13.85 1132.79 3378 2395 2539

ranges for the received neighbor table are augmented by

current hop distance and that the motes neighbor tableeentri The triangulation approach produces large error for pratti
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Fig. 15: Performance comparison between localization meth
ods for test deployment of 10 motes in three adjacent indoor
Fig. 14: Performance comparison between localization me#tooms.

ods for test deployment of 10 motes in a single indoor room.

(b) Estimation results with error extent.

conditions are not fulfiled by the selected anchor pairs.

results mainly due to the cause that error that is evidé?\'f'mher important finding is that these degenerate cases are

in practical environment is not uniform in all directions.Only evident for sources placed on the boundary of the region

Moreover, single path loss exponent — 2.0 is used for while the anchors appearing only one side of the node are used
j ' gﬁ localization. Hence, for a sufficiently dense deployinen

all three cases which is another source of error in the ran h . be ch ; | i f th
estimation. Due to the huge error margin for triangulatio en anchor pairs can be chosen from afternate sides of the

approach the performance for outdoor, indoor single roofipde such degradations can be avoided.

and indoor three rooms are presented in TaBe&T, Il andPML by LOP refinement process is however free from these
[V respectively. As RSS based range measurement erroJ|iches as it is consistent and always gives better esomat
one of the fundamental criteria for assessment of locadizat 12N triangulation. The practical setup is able to give rclea
performance these are presented by average of the RSSgan idation of the proposed formulation for its adoption &al

error from contributing anchors alongwith triangulationda ite localization instead of basic triangulation that i® thasis
PML performances of most localization approaches till now.

It is evident from tabledICT andIV that simulation Summarizing, PML is an improvement over triangulation-

results are rather conservative than the practical impneve base.d. Iocghzgﬂon n thqt it considers noisy measurement
conditions in its formulation. The comparative results -pre

by PML. As exemplified by simulations that under larg€ . ) .
margin of noise the PML performs increasingly better an?]emed unequivocally endorse the potential of this neviegya

) : . }qr real time location estimation and tracking performance
hence the improved performance is quite commensurate wi : . . . . . .
simulations. with it being especially generic for a wide diversity of

S . ommunication-based applications.
The results highlight an important aspect of the bas?c PP

assumption of equal range noise. For most of the cases PML
approaches show large improvement over basic triangualatio
while for some cases PML (Single Ref. Anchor) and PML This paper has presented an analytical approach to source
(Equal Noise Param.) shows degradation in estimation cofoealization in Wireless Sensor Networks (WSNs) underyois
pared to triangulation. These are the cases when the prdsuenditions. The paired measurement localization (PMLpalg

VIIl. CONCLUSION
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TABLE III: Indoor Single Room Experimental Results forto be particularly effective for received signal strengdséd
Triangulation and PML Estimations

# Original Mean  Triang. PML PML PML
Position RSS Est. (Sing. (Eq. (LoP

Rang- Err. Ref.) Noise) Re-

ing Err. Err. fine.)

Err. Err.

(m) (m) (m) (m) (m) (m)

1 (1.79, 2.5) 2.61 145.56 26.74 6.26 4.76
2 (1.79, 4.35) 193 136.31 7.85 5.85 7.89
3 (1.79, 6.14) 3.67 175.64 6.83 5.63 3.16
4 (3.08, 4.35) 2.35 83.12 38.41 5.21 3.69
5 (3.08, 9.3) 33.11 18.77  240.96 133.69 6.57
6 (3.08, 7.2) 66.57 14.85 791.98 1268.40 6.87
7 (3.08, 12.6) 3.59 13311 8.71 7.22 8.80
8 (4.95, 2.5) 191 21.66 7.91 471 191
9 (4.95, 7.2) 410 22951 9.99 3.69 4.73
10 (4.95,11.1) 3.82 138.05 545.31 6.12 3.04
11 (4.95, 12.6) 1.66 91.77 6.77 6.12 5.17
12 (6.82, 4.35) 3.74 98.47 2.83 1.28 7.90
13 (6.82,7.2) 247 14717 1.45 1.03 12.67
14 (6.82,9.3) 143 71.57 1.10 1.09 1.35
15 (7.53, 12.6) 1.55 88.41 16.49 10.61 3.19
16 (8.68, 2.5) 210 116.36 4.58 4.42 5.42
17 (8.68, 4.35) 1.35 207.34 2.72 2.88 3.42
18 (8.68,7.2) 6.07 95.13 4.97 3.84 3.04
19 (8.68,9.3) 1.26  180.10 12.43 1.88 2.57
20 (8.68, 11.1) 1.38 79.37 3.15 3.03 1.42
21  (9.41, 12.6) 2.07 166.15 5.82 4.75 4.24
22 (10.56, 2.5) 217  116.08 3.05 0.68 1.71
23 (10.56, 7.2) 3.76 80.71 0.67 2.95 4.52
24  (10.56, 11.1) 6.12  303.30 10.71 7.66 121
25 (11.29, 12.6) 2,60 17445 5.26 6.07 5.68
26 (12.46, 7.2) 249  216.05 3.78 4.00 2.66
27  (12.46, 4.35) 477  135.77 2291 18.45 0.93
28 (12.46,9.3) 3.01 98.58 1.88 5.24 3.75

range measurements, which are very important as they eequir
either little or no additional hardware and are easily agldpt

to miniature WSNs devices. Comparative localization rtssul
for PML and the traditional Triangulation method confirm the
fundamental argument that it consistently provides soperi
estimation performance with lower errors under realisticsy
conditions. Moreover, since PML is an analytical approach,
it is computationally efficient and could help minimize data
transmission between nodes once the anchor node selection
process is completed. Another implication of the proposed
PML is that it is an enhancement over basic triangulation
with the cost of additional measurements and hence could be
utilized in GPS receivers to minimize the adverse affect of
timing asynchrony.
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