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Abstract

A method for deriving optic �ow� using robust statistics� is derived and applied to

standard test image sequences� We compare the performance of our approach against the

best results derived from competing methods� The method out�performs all published

methods in terms of accuracy� The method is also cheaper to implement than most of

the other methods� One of the key features in the success of this method� is that we use

Least Median of Squares� which is known to be robust to outliers� However� the Least

Median of Squares is known to be computationally expensive to compute� We manage

to keep the computational cost very low� whilst still retaining excellent performance� by

using an approximate solution to the Least Median of Squares only in a �rst stage that

detects outliers� The approximate solution is fast and adequately robust� as our extensive

experiments demonstrate� The essential features of our method should be applicable

in the solution of a wide range of other problems� essentially� wherever one solves an

over�determined set of linear equations�

� Introduction

This paper describes a robust method for computing optic �ow� Optic �ow is the apparent
motion of objects when projected onto the image plane� The crux of our method is to develop
a robust way to solve a set of over�determined linear equations�

Despite at least two decades of research� the best methods for the extraction of optical
�ow are relatively inaccurate and non�robust� By non�robust� we mean that the accuracy� in
particular parts of the image� is often considerably worse than the general accuracy attainable
over much of the rest of the image� The degradation in accuracy is due to a number of factors
such as larger noise in that region and�or failure of the underlying image motion model �see
section �����

In this paper� we use robust statistical methods� as well as some other innovations� in the
motion recovery formulation� We are able to achieve both an increase in accuracy� and a
degree of robustness that is matched� if at all� by few other methods�

The outline of the papers is as follows� In section � we give a brief introduction to motion
estimation methods� In this section we also survey some of the methods of others� which
also aim to improve the robustness of optic �ow calculation� The purpose is not to give a
comprehensive survey �that is beyond the scope of this paper� but to contrast our approach
with that of the major competing methods� The motivation for our method comes from
comparing the relative advantages and disadvantages of some standard formulations for solving
a set of over�determined linear equations� In particular� we derive the basis for our approach by
comparing standard least squares approaches with closest point and least median of squares
re�formulations of the problem � section 	� In section 
 we describe our new method� we
adapt some methods for fast �approximate� Least Median of Squares in Linear Regression
problems� so as to be able to perform outlier detection for �weighted� Least Squares problems�
We then� section �� present results of experiments that verify the e
ectiveness of our proposed
approach�

Since the key to our approach� is to solve an over�determined system of linear equations
in a robust manner� we expect the approach will be more widely applicable to other areas
�to other problems in computer vision and to other problems in unrelated areas that also

�
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reduce to the solution of an over�determined linear system�� Thus� the present paper should
be considered as the �rst demonstration of a basic robust scheme for solving linear equations�
where we have chosen to apply the method to optic �ow calculation� We do not claim that the
current implementation is the best one can do with our basic method� Some suggestions for
improving the implementation� for optic �ow calculations� as well as suggestion of other areas
of application of our techniques� are contained in our summary and conclusion �section ���

� Optic Flow and Robustness

It is possible to place almost all optic �ow techniques into one of the following three categories�

� Correlation based techniques

� Phase or energy based techniques

� Di
erential techniques�

Correlation based techniques seek to explicitly match a small region of pixels in one image�
with a region in the next image� using a measure of match that is related to cross�correlation�
Such methods are similar to stereo or photogrammetric techniques� They are also popular in
video coding methods that employ motion compensation �most MPEG encoders employ this
type of technique��

Phase or energy based techniques seek to �lter the image sequence with specially tuned
�lters � the outputs of which are combined to give a phase or energy measure that indicates
the local speed and direction of motion� One of the most successful methods� but expensive
to compute� is that of Fleet and Jepson ����

Di
erential techniques try to relate local changes in image intensity �expressed as spatial
and temporal derivatives of the image brightness function� to the optic �ow� Di
erential
techniques usually perform faster and usually lead to a simple set of linear equations� We
base our approach in this class of approaches� For this reason� we explain� below� the basic
idea behind this class of methods�

��� Di�erential Based Optic Flow Methods

The di
erential techniques invariably involve some form of what has become known as the
�Optic Flow Constraint� �OFC�� This constraint dates back to the late �����s ����	�� Although
the derivation of this constraint occurs in many sources� we give a derivation here that is
slightly more mathematically precise than most we have seen �see appendix A��

The OFC can be written as�

Ixux � Iyuy � It � � ���

which relates the spatial �Ix and Iy� and temporal �It� derivatives of the image brightness
function� at each point� to the optic �ow� �ux� uy�� at that point�

Since there is only one equation in two unknowns� we cannot solve for both the x and y

components of the optic �ow� without additional assumptions or information �the well known
aperture problem�� Put pictorially� �and in a way that we will make use of later�� a single
equation produced by the OFC only constrains the optic �ow �ux� uy� to lie on a constraint
line in �D ux � uy space� we need at least one other non�parallel constraint line to uniquely
determine the �ow�

In other words� using just the information we have so far� the problem is ill�posed� Various
alternative strategies to make the problem well�posed �regularise the problem� have been
suggested� These include� minimize a functional derived from the OFC and a smoothness
penalty term �e�g�� �	��� assume constant or a�ne variation in the optic �ow �e�g�� �
� ����� and
di
erentiate the OFC to obtain more than one constraint �e�g�� ����� All of these approaches� in
some form or other� assume that the optic �ow of nearby pixels are closely related � some form
of motion consistency assumption� In the last example� di
erentiating the OFC� the nature of
that motion consistency assumption is more subtle� Essentially� the �extra� equations are only
independent because the derivatives have to be estimated by a process that collects information
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over a region �not a mathematical point� � if there is not some local consistency in the motion
over this region� such a local gathering of information would not provide a valid constraint�

Regardless of the strategy for overcoming the aperture problem� one usually arrives at a
set of linear equations to solve for the optic �ow at each point�

Av � d ���

where v is a two component vector� v � �ux� uy�� �the optic �ow we wish to derive�� A is an
p � � matrix �whose coe�cients are somehow related to the image brightness� and d is a p

component vector �again� related to the image brightness�� The rank of A should be greater
than � �otherwise we still cannot solve for the two components of the �ow�� Note� although we
only need two independent equations� we have to recognise that the derivatives can only be
approximated� thus any two independent equations will not necessarily give the best estimate
of the true optic �ow� So we must� in general� use more equations than we have unknowns�
In other words� we inevitably arrive at a set of over�determined linear equations�

We discuss the alternative general strategies for solving such an over�determined system in
section 	��� From the perspective provided by this discussion� we explain our approach� and
the motivation for our approach in section 
�

��� Robust Optic Flow Methods

�Robustness� implies that the method is less sensitive to perturbations in input data� Roughly
speaking� a robust approach should not produce estimates that are clearly wildly wrong�
Nor should a robust approach� avoid making erroneous estimates simply through discarding
potentially useful information� just to avoid the possibility of the result being erroneous� that
is� a method that is overly conservative and produces no estimate almost anywhere in an
image� is not a robust method�

����� Rationale for Robust Methods

Although we concentrate on optic �ow methods based upon the di
erential optic �ow con�
straints� much of what we say about the need for robust approaches still applies to the other
classes of methods� In particular� in some form or other� all methods require some form of the
following two basic assumptions�

� Intensity Coherence The image brightness of a point imaged in two successive images
is �strictest assumption� constant or �weaker assumption� nearly constant�

� Motion Coherence The motion of points nearby in an image is the same �strictest
assumption� or slowly varying �weaker assumption��

One common form of the last assumption is to allow the image velocity to locally vary in some
linear or a�ne fashion�

There are a number of reasons why particular methods of optic �ow produce erroneous or
inaccurate results� It is useful to categorise these sources according to�

� failure of the image�motion model

� failure of the brightness consistency �weak or strong forms�

� failure of the motion consistency �weak or strong forms�

� noise �e�g�� sensor noise� poor approximationof derivatives in a di
erential based scheme��

We argue that this classi�cation is useful because failure of the imagemodel� as we de�ne it� has
some important practical distinguishing features� Firstly� it usually occurs in particular regions
that are associated with geometric or physical properties of the scene� For example� a moving
specular surface may destroy the accuracy of the brightness constraint� the boundary between
two regions moving with di
erent motion will destroy the motion consistency assumption�
Secondly� this class of errors tends to lead to more severe errors� and� in some sense� errors
that are less random than the errors from the other sources that we have lumped together
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as �noise�� For this reason� we argue that the �rst class of errors can be detected by robust
statistical methods to detect outliers� The second class of errors� if also severe can be similarly
detected as outliers� On the other hand� if errors from this class are less severe� and cannot be
considered to be outliers� they can perhaps be reduced in e
ect by simple processes such as
least squares solution� In this way we can take maximum advantage of the particular features
of some standard robust and non�robust re�formulations of the optic �ow problem � see section
	���

Thus� the essential point is that� we see robust methods as ones that can avoid producing
wildly wrong estimates for the optic �ow� particularly where the source of the likely breakdown
in performance is a failure of the image motion consistency or image brightness consistency
assumptions� Such breakdowns commonly occur� with non�robust methods� around the edges
between di
erently moving objects� An extreme case of the latter is the situation where we
have �motion transparency� �for example� a re�ection on a transparent surface moving dif�
ferently to the material beyond that surface� or� where there are two populations of movement
interspersed� such as a �ock of birds against a background of clouds� � an example of which
is shown in section ������

����� An Example of Motion Transparency and Outliers

To demonstrate the e
ects of noise and of breakdowns in the underlying motion model� we take
a real image sequence� the famous Hamburg Taxi scene �see �gure ��� A van in the lower left
corner is moving to the left at approximately 	 pixels per frame� We selected a small window�
centred on this van ��	 pixels square and centred at the point ������	���� For each pixel� we
calculated the spatial and temporal derivatives of the image brightness to yield a single OFC
for each pixel� We then plotted the OFC lines �see �gure ��� If� in this small rectangle� we had
a single underlying image motion� and the data were noiseless� we would expect all constraint
lines to pass through the point representing that motion� ��	��� in this example� However�
even though there is some tendency for many of the lines �shown solid� to cluster about this
point� there are many lines �shown dashed� that nearly intersect at the point ������ This is
mainly due to the branches of the tree that intersect the rectangle from which we have drawn
our pixels �the pixels in this rectangle� therefore� are a mixture of those belonging to the van�
and those belonging to the tree� the former have approximately uniform motion to the left
and the latter are stationary�� This is a phenomenum sometimes referred to as �transparent
motion� since it is similar to the situation where a re�ection� in a pane of glass� for example�
has di
erent motion to other objects behind the re�ection� In addition to the breakdown in
the motion consistency or coherence assumption �i�e�� the motion model� we have other noise
e
ects� due to a variety of other sources� that cause a spread in the intersections of these two
populations�

The point we wish to make� with this example� is that a non�robust method that tries
to treat all of the constraint lines as being valid data �for a single underlying motion�� will
produce very poor estimates of the velocity� We wish to have a robust method that will reject
the in�uence of any data that either belongs to another population �two or more independently
moving object in a window�� or is so badly corrupted by noise as to be unreliable� After brie�y
surveying other attempts to achieve this end �next section�� we devise such a robust method
�section 
��

����� Previous Robust Approaches

The explicit usage of robust statistics for recovering the visual motion dates back to early
this decade� Darrel and Pentland ��� considered using M�Estimators for 	�D translations with
constant depth� For ���D� optic �ow� Black and Anandan ��� and Odobez and Bouthemy ���
developed methods using M�Estimators for a correlation and di
erential formulation of the
optic �ow problem� The main di
erence between these two approaches is the use of di
erent
minimisation techniques� However� M�estimators have very low �break down points� ���� �
the percentage of contaminated data that can cause the estimator to give an estimate far from
the true estimate� In fact� the breakdown point of the proposed M�estimators is at most �

�p���

where p is the number of estimated parameters ����� This shows that for an a�ne model
used in ���� with � parameters� the breakdown point is only �
�� A second limitation of this
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Figure �� Hamburg Taxi Sequence
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Figure �� Hamburg Taxi Sequence � Optical Flow Constraints
Optical Flow Constraint Lines for the Hamburg Taxi sequence� There are ��� lines� one for
each pixel in the rectangle in �gure �� The lower axis represents the horizontal velocity� ux�
and the left�hand axis represents the vertical velocity uy�
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approach is that there are a number of parameters to �tune� with no clear rule as to how to
do so�

A similar approach for estimating the �ow �eld� using the Horn and Schunk �	� type
regularisation technique has also been proposed by Iu ����� In this method� the motion is
estimated by minimising the energy function of a globally smooth motion model� A rank
ordering technique is used to reject the local outliers of the globally smooth model and the
resulting minimisationproblem is solved using a stochastical optimisation technique �simulated
annealing�� Aside from computational burden of such minimisation technique� the proposed
kind of outlier rejection is likely to become very unstable for centrally located data� Since there
is no measure on quantitative performance is presented� it is di�cult to assess the performance
of this method�

In order to cope speci�cally with motion boundaries� Fennema and Thompson ��� pro�
posed a clustering method using the Hough transform� This method is computationally very
expensive� Schunck ��	� modi�ed this method� to reduce the computational cost� by clustering
constraint lines along the OFC produced by the central pixel in a patch� However� such a
method is patently non�robust to perturbations in the data that determined the central con�
straint line� To overcome that problem� Nesi et al� ��
� proposed a method based on the
Combinatorial Hough Transform� This approach� however� still remains expensive� Moreover�
all of the methods just discussed� solve the problem as a version of the Closest Point Problem
�see section 	����� where we argue that this unnecessarily discards some useful information
and� even worse� such a formulation can be highly in�uenced by less accurate information��

Another approach to optic �ow computation using robust statistics is the use of Robust
Hough Transform �������� In this approach� an a�ne model of motion is introduced and the
�ow is calculated by Hough Transform� This Hough transform is based on the parameter
space of the a�ne motion model� and �voting� uses the error between the brightness values
of corresponding �using the a�ne mapping� pixels in sequential frames� weighted by a kernel
function belonging to the M�Estimators family� The Median of Absolute Deviation is used
to scale the residual before applying the kernel function� Since a good match should lead
to a low error function �and thus a low vote in Hough transform space�� the problem then
reduces to an optimization problem� �nding the minimum in Hough space� The resulting
optimisation problem is then solved using the �steepest descent� method� This algorithm has
serious limitations due to the robustness limitation of M�Estimators �see previous discussion of
Black�s method�� Moreover� for the optimisation scheme to work� the support function has to be
a well�behaved function� As explained by the authors� the function is only well�behaved in the
region with valid Taylor expansion� So� in the regions with motion boundaries� transparency
etc� the optimisation scheme is likely to fail� The very poor results presented for the Yosemite
Image sequence ���� con�rms our intuition about the limitation of their algorithm�

Several works use Total Least Squares �TLS� ���� ���� ����� Even though such methods
can improve the results �basically by considering noise in both the coe�cients and the right
hand side of equations such as �� these methods are not robust methods as the break down
point occurs even at one bad data sample�

Although Meer et al� ���� uses LMedS in other problems drawn from the computer vision
�eld� it seems that no previous work has used Least Median of Squares �LMedS� to solve the
optic �ow problem� Mitiche ���� has mentioned the possibility of using LMedS� but appears
not to have explored this suggestion with an algorithm or experimental results� We base our
new method� in part� on the LMedS technique� However� as we describe later� the LMedS is
not a practical technique by itself� thus our full technique is vastly di
erent to even anything
that could result directly from the suggestion of Mitiche�

We have not given a precise de�nition of �a robust approach�� so it is not possible to give
a complete categorisation of previous approaches into robust or non�robust� It is certainly
true that most recent methods employ some form of post�processing �to identify and reject
erroneous results�� Although this produces a form of robustness� this is a form that� even if it
works well� is too conservative � it often produces no estimate even where the situation ought
to be salvageable �in short� the perturbed data has already �done the damage� and should
have been removed earlier��
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� Methods for Solving Linear Equations in Presence of

Noise

Before describing our approach in detail� we need to introduce various abstract problem
formulations� Least Squares Problem� Standard �linear� Regression Problem� Least Median
of Squares� and Closest Point Problem� We remind the reader of the context �refer to section
����� our brightness consistency and motion consistency assumptions generate� for each local
area� a system of simultaneous equations �equation ��� There are a number ways of viewing
and re�formulating the problem� many of them suggested by considering that each equation
can be viewed as a constraint line in ux � uy space� It is in this context� that our optic �ow
problem can be related the aforementioned abstract problems � which we now discuss� in turn�

��� Standard Reformulations of the Solution of Linear Equations

����� Least Squares Problem

This is the most well known formulation applicable to solving an over�determined set of
equations�

Suppose we have p equations in � unknowns �x and y��

ai�x� ai�y � di� d � � � � � p �	�

We seek the �x� y� that minimises�

ELS �

pX
i��

�ai�x� ai�y � di�
� �
�

This formulation has a well known explicit solution �simply obtained by di
erentiating ELS�
with respect to the unknowns� and equating these derivatives to zero��

v � �ATA���ATd ���

where v � �x� y�� A is the matrix with ijth entry aij and d is a �column� vector with row di�
Thus the formulation leads to easy and quick solution methods�

Another attractive feature of the least squares problem is that the LS produces an estimate
that has the smallest variance amongst the solutions that are linear in the data d when there
are no systematic errors ����� The emphasis on the last qualifying phrase is placed there as
this is the key weakness of the LS approach in optic �ow calculations� particularly in regions�
such as occluding boundaries� where the underlying model is no longer valid� This observation
is one of the foundations of our proposed robust method�

����� The Closest Point and Standard Regression Problems

Many formulations of optic �ow use a closest point problem �see section ����	�� Given a set
of p lines� y � mix � ni� i � � � � � p� the problem is to �nd the point that has the minimum
sum of squared vertical distances to the lines� That is� to �nd the �x� y� that minimizes�

ECP �

pX
i��

�mix� ni � y�� ���

On the face of it� this problem looks very much like the Least Squares Problem� However�
there is one very important distinction� in the Least Squares Problem� even though every
equation represents a line� we have not chosen to weight each line equally� Put more precisely�
we can map one problem on to the other by the following process� multiply each term in
equation 
 by ��

ai�
and identify �ai�

ai�
with mi� and

di
ai�

with ni� However� the scaling� which we
have introduced to show the equivalence� will weight each term in the sum di
erently� some
�errors� will now be more highly penalized by others in the reformulation� This distinction
is important since our equations often carry a natural scale� For example� the OFC� equation
�� produces coe�cients that are scaled by the gradient of the image brightness� This has the
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natural and useful consequence that those constraints resulting from parts of the image with
high contrast will carry more weight� in a least squares formulation �an observation commonly
made in the literature � see� for example� ������ To arbitrarily rescale such natural weights� as
one would have to do to reformulate the problem as an instance of the closest point problem�
is likely to be a retrograde step � an objection to this type of approach that seems to have
escaped many �e�g� ��
�� who have used a closet point formulation in their schemes�

There is a one�to�one relationship between the closest point problem formulation and with
that of the standard regression problem �and hence with least squares formulation�� In the
standard �linear� regression problem� we have a number of data points� to which we wish to
�t a line� That is� given a set of p points� f�xi� yi� � i � � � � � pg� we wish to �nd the line�
parameterised by �m�n�� i�e�� y � mx � n� such that the sum of squared residuals �squared
vertical distances to the line from the points� is minimised� In other words� we seek �m�n�
that minimise�

ESR �

pX
i��

�mxi � n� yi�
� ���

Given a CP formulation� we can de�ne a mapping T that takes each line �mi� ni� of a CP
formulation and uses these parameters to replace �xi� yi� of a SR formulation� Comparison of
formula � and formula � shows that the solutions will be related by� the original CP solution
�x� y� is given by �m��n�� where �m�n� is the solution of the new SR formulation� Obviously�
a similar relationship applies in reverse�

One of the problems with the standard regression formulation� with the least squared for�
mulation� and and with the closest point formulation� is that one bad data point can drastically
in�uence the solution� These methods have a break down point of one and are not robust�

����� Least Median of Squares �LMedS�

The LMedS problem� as proposed in ��	� ���� is a reformulation of the standard regression
problem� Instead of �nding the line that has the smallest squared vertical distances from
the data points� the LMedS approach identi�es the narrowest strip �bounded by two parallel
lines� that contains one more than half of the data points� the LMedS line then runs down the
middle of this strip ��
�� The break down point of the LMedS is ��� � it can tolerate up to
half of the data points being arbitrarily bad� As long as the majority �p���� in our examples�
are �sensible�� in some sense� the solution will be �sensible��

As we described before� our preferred formulation for the optic �ow problem is a Least
Squares formulation� The LMedS method presented in ��	� is a robust solution to the Standard
Regression problem� therefore� we have reformulated the LMedS to apply to the Least Squares
problem �see section 	���� In the sequel� when we refer to the LMedS approach� we refer to
the approach as modi�ed for our purposes�

We now illustrate how the LMedS solution can provide a more robust solution� than LS�We
generated �� linear equations� chosen so that 
	 of the associated lines pass through the point
�	� �� and the remainder of lines pass through �������� This can represent a situation where
we have two di
erently moving objects in one patch of pixels� the objects are positioned so that
we obtain approximately equal mixture of data consistent with one motion �ux� uy� � �	� ��
�this is �	��� of the lines� and the rest consistent with a motion of �������� We then imposed
��� random noise to the coe�cients of the lines associated with the �narrow� majority� The
coe�cients of the rest of the lines are untouched� One can see the lines plotted in �gure
	� This represents an extreme case� Not only are nearly ��� of the data consistent with
some other estimate� but this slight minority data is all �clean� � they are all perfectly in
agreement with the solution �������� The slight majority population has been polluted with
noise so that there is no perfect agreement� of this slight majority� with the motion �	� ���
However� despite the apparent di�culty of �nding the �true� majority solution� the LMedS
does� indeed� predict virtually the correct result �the solution by this method is ������� 	������
whilst a Least Squares solution is� as expected� very inaccurate�� Indeed� the Least Squares
solution of ������� ������ is� as expected� consistent with neither population of data but is
consistent� wrongly� with some sort of compromise�
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Figure 	� LMedS Example
In this �gure� there are �� lines� Of these� a slender majority �
	� are formed from lines that
were coincident on ��� 	�� however� they have been displaced by ��� noise having been added
to their coe�cients� and the rest are coincident on �������� The LMedS solution �solid arrow�
is still in agreement with the intersection point of the majority �before noise�� whilst the LS
solution �outlined arrow� is some type of erroneous compromise between the two populations�
This shows the extreme robustness of the LMedS formulation�

����� Summary and Comparison of the Formulations

The CP and SR problems are essentially dual formulations of the same problem� The LS
formulation is related to the CP and SR formulations but not an identical reformulation� The
LS� CP� SR� are all fast to compute� however� they are all non�robust� The LMedS is very
robust� but is expensive to compute� Indeed� no closed form solution of the LMedS formulation
is known� The fastest known method for computing the exact LMedS solution has O�p�� time
and O�p� space complexity �����

��� LMedS for Outlier Detection � WLS

The previous discussion has shown that� if we try to formulate the solution of the over�
determined set of linear equations �our optic �ow constraints� into any of the LS� CP� or
SR formulations� we may gain such things as fast solution algorithms or an improvement in
the ease of analysis of the formulation� but they are all basically non�robust� The LMedS is
robust but computationally and analytically unattractive� The key to salvaging the situation�
in view of this dilemma� has two parts� explained in this section� Firstly� there are fast meth�
ods to approximately solve the LMedS solution� The approximation is usually good enough
to employ the LMedS solution� not as a �nal solution to our optic �ow problem� but as a
temporary solution from which we can detect outliers� Secondly� having detected outliers� we
can now safely use a fast� but non�robust method� such as LS� on the data after the outliers
have been removed�

Using this observation� we will �next section� devise a complete method for optic �ow
calculation that has� as a basis� what we call Weighted Least Squares� The essential idea is
that� after solving� approximately� the LMedS formulation� we then have an estimate of the
dominant optic �ow �in that region�� from which we can classify the constraint lines as being
�good� or �bad� in terms of how consistent they are with this estimate� We can then �weight�
the constraint equations �associated with each line� to re�ect this con�dence measure� In the
extreme case �one that we use in this paper� the weights are either � �reject� or � �accept�� We
can then solve the weighted equations by a non�robust method� such as least squares� since
we have� hopefully� removed all signi�cant outliers�

The complete scheme is a little more complex than this� However� at this this point� before
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Figure 
� Weighted Least Squares
In this diagram there are two populations of lines � the majority �solid� are consistent with one
common point� while the minority are consistent with another� The Weighted Least Squares
solution �black arrow� is unperturbed by the presence of the minority population �outliers�
whilst the Least Squares solution �white arrow� is consistent with neither population�

explaining the complete scheme in detail� we take the opportunity to illustrate the e
ectiveness
of the key idea we have just introduced�

First� consider a synthetic example� We de�ne the parameters of �� lines so that the
majority �all except ��� pass through the point �	��� while the minority pas through the
origin� These lines are drawn in �gure 
� The black arrow depicts the �robust� weighted least
squares solution �	������������ which is much closer to the true intersection of the majority
than the least squares solution of �	��	�����	���

For our second example� we return to our Hamburg Taxi example� �gures � and �� The
least squares �LS� and weighted least squares �WLS� solutions are depicted in �gure �� The
WLS solution of ������	� ������ is clearly closer to the true motion �not precisely known but
is approximately �	� ��� than the LS solution of �������� �������

� Proposed Method

We now have all the ingredients �and background rationale� for constructing our method�
Given a set of linear optic �ow constraint equations �equation ��� we would� ideally have
a single unique solution� Pictorially� in ux � uy space� each equation is a line and� in the
ideal case� all lines would go through a single point � our required solution� However� in
reality� we are faced not only with a situation in which most lines do not go through the real
solution point� but that there are severe outlier lines� We are then faced with the question
as to how to characterise the solution� Many alternatives suggest themselves� is it the point
with the smallest sum of squared distances �taken vertically to the lines�� However� this is
non�robust to our outliers� Moreover� as we argued earlier� the implicit normalisation of the
CP formulation destroys the natural con�dence weighting� available in the LS formulation�
that comes with the magnitude of the coe�cients of the linear constraints�

We would like to use the LS method for solving our optic �ow equations �equation ��
because it is fast� the solution is explicitly known �equation ��� and the method is reasonably
tolerant of non�systematic noise� We consider using LMedS� as an alternative� since it is
robust� but we �nd that it is too expensive to use this method� Thus we return to consideration
of LS� Those systematic errors� and�or other noise that is large enough to be troublesome�
must be removed as the LS is not robust against these� At this point� we are saved because�
although the LMedS is expensive� there are fast approximations will yield a solution good
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Figure �� Weighted Least Squares � Hamburg Taxi
The black arrow shows the WLS solution and the white arrow shows the LS solution� The
WLS solution is clearly closer to the �approximately� known true motion of the taxi ��	����

enough �close enough to the true solution� to classify and remove outliers� Thus we use the
approximate solution to detect outliers� then� with the outliers removed we solve the remaining
system with a least squares which is fast and gives a good estimate if the noise is non�biased�

To this basic strategy we need to add one further ingredient� The whole basis of the Least
Median of Squares method is that there must be a population that is in the majority� This can�
of course� break down �if we have� say� three populations roughly equal in size�� Moreover�
since we are using an approximate LMedS solution� and because there may be other disturbing
factors �perhaps there simply is not enough texture� in the region to give any reasonable
constraints�� we need to be able to validate our �nal answer �and reject estimates that are�
despite our best e
orts according to the previously outlined strategy� clearly erroneous�� We
shall propose a measure of reliability �appendix C� for this purpose� Thus our scheme requires
just two thresholds� a threshold for outlier detection �appendix B� before applying WLS� and
a threshold for reliability to discard any �nal answers� after WLS� that are still unlikely to be
accurate� Since the precise method for choosing these thresholds is not essential to the scheme
we are proposing� we give the details in the appendices� Su�ce to say� one threshold is always
set �appendix B� to a �xed value� determined experimentally� and the other is set by a user
de�ned value�

For purposes of clarity� we list the steps of our algorithm here�

�� Estimate the spatio�temporal derivatives of the image brightness function� The precise
form of estimate� whilst important for accuracy� is not essential to our proposal� We
choose to use� for our experiments� convolutions with derivatives of Gaussian functions
�as is customary in many approaches� see for example ������

�� Select a patch of the image� over which we are going to assume some motion consistency�
The precise form of the motion consistency is not essential� we are simply assuming a
single or dominant population �we only recover the dominant population if there is more
than one � we can� of course� elaborate our method to remove the dominant population
and re�solve for any secondary populations� but we leave this to future work�� In our
experiments we choose to assume the motion is �spatially� constant in a patch� Future
work could include an a�ne �spatial� variation in motion within a patch�

As a result of this stage� each patch yields a system of equations expressing the motion
constraints �equation ��� where� in our experiments� each constraint is of the form of
equation ��

	� Use a fast and approximate LMedS solution to obtain a temporary estimate of the
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motion� Again� the precise method to approximate the LMedS solution can vary� We
use here an algorithm adapted from Rousseeuw and Leroy ����� Whereas that method
was de�ned for a Linear Regression problem� we adapt it to a Least Squares problem�

One simply randomly chooses some fraction of the constraint lines� pairwise� and for
each pair� we calculate the intersection� For this intersection one can calculate the
residuals for all other lines� and� in turn� calculate the median of these residuals� The
pair of lines with the smallest residual is chosen as the pair that de�nes the approximate
Least Median of Squares solution� In a naive approach to approximating the LMedS
solution� one would try to use every possible pair of lines �a combinatorially explosive
situation� and evaluate the median of the residuals produced by the intersection of each
pair� However� one can use a very small fraction of the possible pair combinations and
the probability is high that the subsample will produce an intersection that belongs to
the majority population ���� �for approximate LMedS in outlier detection� we need only
one such good intersection�� Indeed� if one chooses m pairs of lines� from the p we have
in each patch �p is considerably larger than the number of parameters to be estimated��
then the probability of this sample giving a good estimate for the LMedS solution is�

�� ��� ��� ����m ���

where � is the fraction of samples that do not belong to the majority population� From
this formula� one can see that one can choose a very small population m� and still such
that the probability is close to �� We often use m as small as ���	��


� Reject outliers using a method of outlier rejection� based upon the temporary estimate
of motion�

�� Solve the Weighted Least Squares problem resulting from the previous step� In our
experiments� since we use weights � �reject� or � �accept�� this is simply a matter of
removing the rejected equations from equation � and solving by least squares� the smaller
system� according to equation ��

�� Examine the result� using a measure of reliability and do not produce any estimate if
the result is judged to be still unreliable�

In our experiments� we repeat the above process for a patch centred upon every pixel� to yield
the estimated of the �ow at that pixel�

� Experimental Validation

Before we detail the experimental results� we brie�y discuss the computational cost� Properly
comparing the computational cost of algorithms is� of course� a di�cult procedure� Various
optimizations can usually dramatically change the time it takes an algorithm to run� as can
hardware implementation� Moreover� the speed can be a
ected by various parameter settings�
in our approach� two signi�cant settings are the size of the patch� and the number of pairs of
lines we use to approximate the LMedS result in that patch� For these reasons� since our code
�and usually the code of other researchers� is written more for correctness than speed� we give
only rough� indicative times� Running on an SGI Indy �SC 
��� at �	�MHz� our code takes
approximately ��� minutes to calculate the �ow for an image of size ��� by 	��� using patches
of size � by � around each pixel� and using 	� pairs of lines in each patch to approximate the
LMedS� We can get good results faster� by using only �� pairs of lines per patch� for example�
and the running time is roughly halved� By comparison� a � level implementation of Black
and Anandan�s scheme ��� takes about 
 minutes� and Fleet and Jepson�s scheme ��� takes
about one hour or so� In other words� our scheme is much cheaper than Fleet and Jepson�s
and probably as cheap as Black and Anandan�s �roughly�� We see no impediment to making
the scheme real time using hardware implementation at relatively modest cost� but� of course�
proof of this is beyond the scope of this paper�

The quantitative performance of the proposed algorithm has been measured by applying
the algorithm to image sequences for which the true �ow �elds are known� We provide quant�
itative performance �gures for both synthetic and real image sequences� The synthetic image
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sequences contain a controlled number of the features� exhibited in real image sequences� that
violate the basic model assumptions �motion consistency and image brightness consistency��
thus they provide very optimistic �upper� bounds on the performance one can expect� However�
synthetic image sequences do have two experimental advantages which make them useful� one
can easily calculate the true motion �eld �indeed there are relatively few real sequences with
known motion �elds in general use in the vision community�� and one can control the ways
in which the basic model assumptions are violated� In our examples� the synthetic sequences
basically violate just one model assumption� there is a motion discontinuity �and a simple and
precisely known one at that� that allows us to investigate the performance of the algorithm in
quantitatively identifying the failure of the simple motion model �and correctly reporting one
of the two motions in a patch near the boundary��

All of the derivatives of the image brightness function are calculated by constructing the
appropriate derivative of a 	D Gaussian function �with equal spatial and temporal standard
deviation�� Each sequence is then convolved with these derivative of Gaussian functions� We
report the results for di
erent sized spatial rectangular windows �within which the motion is
assumed to be approximately uniform��

The error analysis is performed using Barron�s ���� software� Therefore� the errors are
reported in �degrees�� This measure is the angle between the true and estimated motions
when each is expressed in homogeneous coordinates� We refer to the cited paper for full
details� As stated by Otte and Nagel ����� the values of the errors reported by this measure
should be treated with some suspicion as estimates that have the same magnitude of error may
provide vastly di
erent angular errors� However� there is not a satisfactory summary statistic
in use in the literature� and� since Barron�s measure is becoming widely used� we believe that�
providing the above warning is noted� it is one of the best available measures one can provide�

The error statistics are generally only of interest in some comparative sense � compared to
other competing methods� Since Fleet and Jepson�s method ��� is reasonably acknowledged
as one of the more accurate methods �and one of the more expensive�� ����� an observation
we have generally con�rmed in our own experiments� we provide the results of applying this
method to the same image sequences� The results for this method are generated by the software
used in ���� �either by taking the results directly from those quoted in that paper� or� where
such results were not provided� running the very same software ourselves�� We have also�
where available� quoted other results� from the literature� produced by other methods such as
those of Szeliski and Coughlan �
��

��� New�Sinusoid� Image Sequence

We created a sinusoidal image sequence similar to Sinusoid� of ����� The sequence contains
images having the same spatial frequencies as Sinusoid�� However� in contrast to that se�
quence� which had spatially constant motion across the whole image� our sequence has motion
boundaries� This was achieved by creating a stationary square �length of side �� pixels� in the
middle of each image� Figure � shows a sample image from the sequence and table � presents
the error statistics for the method of Fleet and Jepson and that of our own� From this table�
it is seen that our method clearly out�performs the Fleet and Jepson method in both accuracy
and density of the points for which estimates are provided�

From �gures �� � and �� we can clearly see that our validation procedure correctly removes
the unreliable motion estimates �and� in this simple case� the unreliable motion estimates are
those around the boundary of the central rectangle� where the image motion model breaks
down�� The size of the improvement can be judged by comparing successive rows in table �
�WLS without check or validation compared with WLS using same size patch� etc�� but with
validation using R� � �������� The validation procedure reduces the average error greatly but
still retains a very high density of reported motion estimates�

��� Yosemite Image Sequence

The Yosemite sequence is one of the most complicated synthetic sequences that is widely
used in the research community� The sequence was generated from digital terrain data of the
Yosemite valley and the sequence depicts a simulated ��y�through�� The motion is mainly
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Figure �� New�Sinusiod� Sequence
One frame taken from the New�Sinusiod� sequence� The texture is created by sinusoidal
spatial variations�

Figure �� New�Sinusiod� Sequence � Correct Flow
The correct motion for the New�Sinusoid� sequence� Small � symbols denote zero velocities
at those positions�

Frame Technique Avg� Error Std� Dev� Error Density

� Fleet and Jepson �� � ���� � � ����� ��	�� �
���� �	��

Fleet and Jepson �� � ���� � � ���� ����� 	���� ���


WLS �� � ��
� ���� m � 	
� without check� ����� �
���� �



WLS �� � ��
� ���� m � 	
� R� � 
������ 
�
�� 
�
�� �	��


�
 WLS �� � ��
� ���� m � 	
� without check� ���
� ����� �



WLS �� � ��
� ���� m � 	
� R� � 
������ 
�
�� 
�
�� ����


�� WLS �� � ��
� ���� m � 	
� without check� ����� ����� �



WLS �� � ��
� ���� m � 	
� R� � 
������ 
�
�� 
�
�� ����


Table �� Error analysis using New�Sinusoid� image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�
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Figure �� New�Sinusiod� Sequence � Flow Calculated with WLS without validation
Without the validation procedure� to detect motion estimates that do not �t our image model
well� we still have some erroneous estimates along the boundaries of the stationary rectangle�

Figure �� New�Sinusiod� Sequence � Flow calculated by WLS with validation
Representative example of the result of applying the validation procedure �R� � ������� to
remove unreliable motion estimates� The positions marked with a � are those where the
estimates were judged to be too unreliable�



Monash University� Dept� Elect� � Comp� Syst� Eng�� Report MECSE ���� ��

Figure ��� Yosemite Sequence � with cloud

Figure ��� Yosemite Sequence Correct Flow � with cloud

divergent� while the clouds drift towards the right with a speed of � pixel�frame� The sequence
is poorly sampled in time and the larger motions are� therefore� subject to bad temporal
aliasing� The results of using this sequence in our experiments are shown in table � �using
a sequence with the cloud � see �gure ��� and in table 	 �using a sequence where no cloud
has been added to the image � see �gure �
�� We also depict the true �ows ��gures �� and
���� �ows recovered by our method without validation ��gures �� and ��� and with validation
��gures �	 and ����

The �rst thing to note is that all methods generally perform better on the sequence without
the cloud � it seems that the cloud has poor texture and so motion estimates in this region
are generally unreliable� Considering the results for the cloudy sequence alone� we see that
the results from our method �WLS� are clearly superior to the methods of Fleet and Jepson�s
and of Szeliski and Coughlan� Turning to the sequence without cloud� our method performs
better than both that of Fleet and Jepson and of Black and Anandan�

One can also see� from these results� that the choice of the number of pairs of lines �m�
used to approximated the LMedS� to remove outliers� does not have a great a
ect on the
accuracy� providing the number m is greater than �� or so�

Finally� we add a note of caution� a completely �fair� comparison is di�cult to perform�
as many authors clip part of the image region �usually the edges but also some of the sky
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Figure ��� Yosemite Sequence WLS Flow �no validation� � with cloud
Visually� the �ow �eld contains many errors in the cloud region�

Figure �	� Yosemite Sequence WLS Flow R� � ��� � with cloud
The validation procedure has correctly identi�ed many of the motion vectors in the cloud
region as being unreliable� There are� however� still a number of undetected �relatively� poor
estimates in this region �contributing to a slightly higher average error when compared with
the same algorithm applied to the cloud free image sequence��

Figure �
� Yosemite Sequence � without cloud
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Frame Technique Avg� Error Std� Dev� Error Density

Middle Fleet and Jepson �� � ��� � � ����� ����� ���	�� 	
��

Fleet and Jepson �� � ��� � � ���� ���	� �	���� 	���

Szeliski and Coughlan �s � �� Te � 	


� ����� ����� �	��

Szeliski and Coughlan �s � �� Te � �


� 	�
�� ����� 	���

WLS �� � ��
� ������ m � 	
� without check� ��	�� �	���� �



WLS �� � ��
� ������ m � 	
� R� � 
���� ���	� 	���� ����

WLS �� � ���� ������ m � 	
� without check� ����� ����� �



WLS �� � ���� ������ m � 	
� R� � 
���� ��
�� ����� ���


WLS �� � ���� ������ m � 	
� R� � 
���� 	���� ����� ����

WLS �� � ��
� ������ m � 	
� without check� ����� ����� �



WLS �� � ��
� ������ m � 	
� R� � 
���� ���	� ���
� ���	

WLS �� � ��
� ������ m � 	
� R� � 
���� ����� ��
	� ����

WLS �� � ��
� ������ m � 	
� R� � 
��
� ����� ��	�� ����

WLS �� � ��
� ������ m � 	
� R� � 
���� 	�		� ��	�� �
��

WLS �� � ��
� ������ m � 	
� without check� ���	� ����� �



WLS �� � ��
� ������ m � 	
� R� � 
���� ����� ����� ����


Table �� Error analysis using Yosemite image sequence �with cloud�
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�

Figure ��� Yosemite Sequence Correct Flow � without cloud
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Figure ��� Yosemite Sequence WLS Flow �no validation� � without cloud
Visually� the �ow �eld contains few detectable errors�

Figure ��� Yosemite Sequence WLS Flow R� � ��� � without cloud
The validation procedure has determined that a small patch �marked with �� of velocities are
unreliable�
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Frame Technique Avg� Error Std� Dev� Error Density

� Fleet and Jepson �� � ��� � � ����� ��
� ����� 	
�


Fleet and Jepson �� � ��� � � ���� 	���� ����� 		���

Black and Anadan ����� ����� �



WLS �� � ��
� ���� m � 	
� without check� 	��
� ��

� �



WLS �� � ��
� ���� m � 	
� R� � 
��� 	��	� ����� ����

WLS �� � ��
� ���� m � �
� without check� 	���� ����� �



WLS �� � ��
� ���� m � �
� R� � 
��� 	���� ����� ���	

WLS �� � ���� ���� m � �
� without check� 	���� ����� �



WLS �� � ���� ���� m � �
� R� � 
��� 	���� ����� ���	

WLS �� � ��
� ������ m � 	
� without check� 	���� ����� �



WLS �� � ��
� ������ m � 	
� R� � 
��� 	���� ����� ����

WLS �� � ��
� ������ m � �
� without check� 	���� ���
� �



WLS �� � ��
� ������ m � �
� R� � 
���� 	���� ����� ���	

WLS �� � ��
� ������ m � �
� R� � 
��� 	���� ����� ����

WLS �� � ��
� ������ m � �
� R� � 
��� 	���� ����� ����


Table 	� Error analysis using Yosemite image sequence �without cloud�
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�

region in the Yosemite sequence�� out before collecting error statistics� Often� they either do
not mention this� or are too vague in their description for one to accurately repeat their results
�or ensure comparable procedures are carried out for experiments on other methods��

��� Otte Image Sequence

This sequence is a real image sequence� recorded using a camera which translates toward a
scene� The objects in that scene are stationary� except for a Marble block which is translating
towards the left� A snapshot taken from this sequence is shown in �gure �� � for more details
of the sequence see ����� The scene contains many sharp discontinuities in both depth and
motion�

The results of our experiments� are shown in table 
� We can clearly see� from these results
that our method �WLS�� particularly with large patch sizes� performs better than Fleet and
Jepson�s approach�

��� Translating and Diverging Tree

The diverging and translating tree sequences are two sequences created by a camera moving
towards and parallel to �respectively� a poster picture of a tree� Thus� all of the image is
essentially at the same depth �although there seems to be some slant� and the �ow is rather
simple �being essentially divergent in one and essentially parallel �ow in the second�� A
snapshot indicative of the images in either sequence can be seen in �gure ���

The results produced by our experiments can be found in� table � �Diverging Tree Se�
quence� and table � �Translating Tree Sequence��

The results of experiments with the �Diverging Tree� sequence show that our method
�WLS� produces results not markedly better than those of Fleet and Jepson�s method� We
believe that this is due to the fact that our �ow model is simple �and we expect to be able
to obtain the extra but small improvement necessary to match their result by incorporating
an a�ne model into our approach�� Certainly� since there are no discontinuities in motion�

�Indeed� if we clip �
 rows from the top �removing the sky region� and � pixels from the other boundaries
�due to the Gaussian mask used to calculate the derivatives�� similar to what we believe Black and Anandan
did� we obtain an average error of ���	� with standard deviation of ����� for all the remaining pixels in the
cloudless Yosemite sequence �using � � �� ��� ��� m � 	
�withoutcheck��
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Figure ��� Otte Sequence
Snapshot taken from the Otte sequence�

Figure ��� Otte Sequence � Correct Flow
Note that� unlike most test sequences with known velocity� there are actually patches of
unknown velocity in this sequence �marked with � symbols��

Figure ��� Otte Sequence � WLS Flow �no validation�
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Figure ��� Otte Sequence � WLS R� � ���� Flow

Frame Technique Avg� Error Std� Dev� Error Density

	� Fleet and Jepson �� � ��
 � � ����� ��
�� 	���� �
��

Fleet and Jepson �� � ��
 � � ���� ����� ��
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Table 
� Error analysis using Otte image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�
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Figure ��� Tree Sequence
Snapshot taken from the Tree sequence� This is actually a photograph of a ��at� poster and
the camera was moved in two di
erent ways� approximately perpendicular to the surface of
the poster �very approximately� to create a mainly divergent �ow� and approximately parallel
to the surface� to create the �translating �ow��

Figure �	� Tree Sequence �Translating� � Correct Flow
True Flow of the Translating Tree sequence�

Figure �
� Tree Sequence �Translating� � WLS �ow �no validation�
WLS Flow of the Translating Tree sequence�
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Figure ��� Tree Sequence �Translating� � WLS R� � ���� �ow
WLS Flow �R� � ����� of the Translating Tree sequence�

Figure ��� Tree Sequence
True �ow of the Diverging Tree sequence�

Figure ��� Tree Sequence �Diverging� � WLS �ow
WLS Flow of the Diverging Tree sequence�
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Figure ��� Tree Sequence �Diverging� � WLS R� � ���� �ow
WLS Flow �R� � ����� of the Diverging Tree sequence�
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Table �� Error analysis using Diverging Tree image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�
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Frame Technique Avg� Error Std� Dev� Error Density
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Table �� Error analysis using Translating Tree image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�

the strengths of our approach� to deal with discontinuities� is unnecessary in this example�
For the �Translating Tree� sequence� all methods report very low average errors� Again� the
motion is extremely simple �no discontinuities and adequately modelled by locally �spatially�
constant� This con�rms our conjecture about the relative performance of our method on the
�Diverging Tree� sequence� Our method must be employed with large patch sizes to give
results comparable with those produced by Szeliski and Coughlan�

� Conclusion

We have developed a robust method for solving a system of over�determined linear equations
for the purpose of calculating optic �ow�

The essence of the method is that we use an approximate Least median of Squares approach
to identify outliers� This is particularly good at identifying and removing the e
ects of the
breakdown of the motion consistency assumptions underlying all optic �ow formulations �im�
plicitly or explicitly� all formulationsmust use a form of this assumption to �beat the aperture
problem��� The robustness� o
ered by the LMedS outlier detection� comes at only moderate
computational cost� indeed� our method is faster than most other schemes claiming high accur�
acy� Having detected and removed outliers� we use a simple Least Squares approach� followed
by a validation step �the latter� although probably useful in other situations� is certainly very
necessary to detect situations where the local area does not contain one dominant motion��

We have implemented and tested the proposed method� It should be emphasised that
the implementation contains many non�essential �to the central robust methods we have just
outlined� aspects� For example� we have used a simple� patch�wise� assumption of uniform
motion � this could be replaced with a more sophisticated a�ne motion model� Even so�
despite being based upon such a very simple motion model� we are able to present results that
generally out�perform or match every published method� Thus� our results� not only are of
interest in that they demonstrate the e
ectiveness of our proposed robust methods� but they
also seem to suggest that the simple motion models�assumptions are perhaps more reasonable
than other works have suggested� Such considerations do not deny� however� that we expect
even further improved performance by adapting our method to use more sophisticated motion
models�

It should be emphasised that the complete scheme� as outlined here� can be elaborated
upon in many ways� Many other innovations readily come to mind� One could develop a
hierarchical implementation that would not only improve calculation times� but would also
allow the method to cope better with larger motions �since the method uses a di
erential based
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approach� large motions can be problematic�� One could also develop a multi�pass approach�
after identifying the outliers in the �rst pass� and solving for the motion associated with the
majority population of pixels in a block� construct a second pass using only the �rejected�
outliers� so as to recover other motions occurring within the block� We could also use M�
estimators and Total Least Squares in the solution after outliers had been removed� These�
and other innovations are the subject of ongoing work�

Finally� it should be stressed that� since the essence of our approach is that it is a ro�
bust method to solve an over�determined linear system of equations� the approach should be
applicable to a wide variety of problems �including and beyond other problems drawn from
computer vision research��
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A Derivation of the Optic Flow Constraint

Consider a point in one image� as time evolves� this point traces out a curve in 	D � �D
space plus time�� We can parameterise that curve using time as the parameter� Thus we may
write the curve as s�t� � �x�t�� y�t�� t�� In other words� given the time t �which image slice
we take� we have the current position to the point as being �x�t�� y�t��� We can suppress the
formal dependence of x and y on t� in what follows� Now the image brightness �the intensity
of the image point� is I�x� y� t�� We can take the total derivative of I�x� y� t� and� assuming
conservation of image brightness� we have�

� �
dI�x� y� t�

dt
�

�I�x� y� t�

�x

dx

dt
�

�I�x� y� t�

�y

dy

dt
�

�I�x� y� t�

�t
���

Since the components of the optic �ow are �ux� uy� � �dx
dt
� dy
dt
� we have the OFC �equation ���
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B Outlier Threshold

In our method� having obtained an approximate solution� based on an approximate LMedS�
we wish to assess the reliability of each constraint equation�

From equation �� we have� for each patch� p equations or constraints� Rousseeuw and
Leroy ���� give a good recipe for detecting outliers� We �rst calculate� for each constraint a
residual ri� then we calculate a scale factor s� according to�

s� � ��
����� �
�

�p� ��
�
q
med

i

r�i ����

We then� for every constraint� associate a binary weight so that the weight is � for any
constraint whose residual ri is such that j ri

s�
j is greater than ���� Rather then using these

weights� to directly reformulate the problem now as a �weighted� Least Squares problem�
we go through one more step of scaling� This is because the original weights were chosen�
according to equation ��� using the median involving the outliers� Since we now have a better
idea of which are truly outliers� we calculate�

�� �

s Pp

i�� wir
�
iPp

i��wi � p
����

and we� �nally� reject those constraints for which the associated value j ri
��
j is greater than ����

C Measure of Reliability

Although the LMedS technique has the highest possible breakdown point ����� of all known
robust estimators� it has the potentially fatal �aw in that is still produces an estimate� even if
the number of outliers is more than ���� Moreover� there are extreme cases where an image
patch may not contain su�cient data �lack of texture� or data so badly corrupted �aliasing for
example� for any estimate to be valid� Thus we still need to validate the estimate produced
by our method�

A tool for the validation process can be modelled on �the coe�cient of determination� �����
The coe�cient of determination� denoted R�� has been de�ned for the Standard regression
problem in at least nine di
erent ways� The most well known of all the de�nitions is�

R� � ��

P
i�yi � !y��P
i�yi � y��

����

where !y is the estimate of y provided by the regression �t and y is the mean of all of the
data points yi� The intuition behind this measure is that the mean� y � is the best prediction
�minimum variance of error� assuming nothing about the relationship between xi and yi in
equation �� �����

For a robust form of Standard Regression� the following de�nition of R� has been used
���� �����

R� � ��
med

i

jyi � !yj

med
i

n
jyi �med

i

yj
o ��	�

However� although we are guided by analogy with the Standard Regression problem� we
are interested in robust forms of Least Squares� In addition� the above R� measure requires
the calculation of medians �a costly operation we would rather avoid�� Moreover� the above
measure is designed to be resistant to outliers� we want to use a measure that will tell us when
the Least Squares �t is valid in terms of the data after we have rejected� what we think are
all of the outliers � we do not want any statistic that is insensitive to the remaining outliers
at this stage of validation�

These considerations lead us to de�ne our own measure� which we also call R�� We
have found the following statistic� inspired by the form of the above measures� experimentally
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satisfactory�

R� � ��

Pp

i��wi�di � !di�
�Pp

i��wi�di � di��
��
�

where di is the average value of the di and !di is such that ai� !ux� ai� !uy � !di for the estimates
of �ow � !ux� !uy� from our weighted least squares�


