Research
My research is in mathematical optimization and its applications.
I am particularly interested in the algebraic and geometric aspects of optimization models and algorithms.
In terms of applications, I have worked on problems arising in areas including statistical modelling,
signal processing, machine learning, power systems, astronautics, (quantum) information theory,
and quantum metrology.
Preprints
A. Tritt, J. Morris, C. C. Bounds, H. A. M. Taylor, J. Saunderson, L. D. Turner, Compressive quantum waveform estimation, October 2023.
[arxiv]
N. Shinde, V. Narayanan, J. Saunderson, An Inexact Frank-Wolfe Algorithm for Composite Convex Optimization Involving a Self-Concordant Function, October 2023.
[arxiv]
K. He, J. Saunderson, H. Fawzi, Efficient Computation of the Quantum Rate-Distortion Function, September 2023.
[arxiv]
K. He, J. Saunderson, H. Fawzi, A Mirror Descent Perspective on Classical and Quantum Blahut-Arimoto Algorithms, June 2023.
[arxiv]
R. Sanyal, J. Saunderson, Spectral Polyhedra, January 2020.
[arxiv]
R. P. Adams, J. Pennington, M. J. Johnson, J. Smith, Y. Ovadia, B. Patton, J. Saunderson,
Estimating the Spectral Density of Large Implicit Matrices, February 2018.
[arxiv]
Journal Publications
H. Fawzi, J. Saunderson, Optimal self-concordant barriers for quantum relative entropies, SIAM Journal on Optimization, Vol. 33, No. 4, pp. 2858–2884, 2023.
[doi]
[arxiv]
B. F. Lourenço, V. Roshchina, J. Saunderson,
Hyperbolicity cones are amenable, Mathematical Programming Series A, 2023.
[doi]
[arxiv]
E. Van de Reydt, N. Marom, J. Saunderson, M. Boley, T. Junkers,
A Predictive Machine-Learning Model for Propagation Rate Coefficients in Radical Polymerization, Polymer Chemistry, Vol 14, pp 1622–1629, 2023.
[doi]
A. Tritt, J. Morris, J. Hochstetter, R. P. Anderson, J. Saunderson, L. D. Turner,
Spinsim: a GPU optimized python package for simulating spin-half and spin-one quantum systems, Computer Physics Communications, Vol 287, June 2023, 108701.
[doi]
[arxiv]
S. Hadavi, J. Saunderson, A. Mehrizi-Sani, B. Bahrani,
A Planning Method for Synchronous Condensers in Weak Grids Using Semi-definite Optimization,
IEEE Transactions on Power Systems, Vol 38, No. 2, pp. 1632–1641, 2023.
[doi]
J. Saunderson, V. Chandrasekaran,
Terracini Convexity, Mathematical Programming Series A, Vol. 198, pp. 399–441, 2023.
[doi]
[arxiv]
J. Saunderson, A convex form that is not a sum of squares, Mathematics of Operations Research, Vol. 48, No. 1, pp. 569–582, 2023.
[doi]
[arxiv]
[YouTube]
B. F. Lourenço, V. Roshchina, J. Saunderson,
Amenable cones are particularly nice, SIAM Journal on Optimization, Vol 32, No. 3, pp. 2347–2375, 2022.
[doi]
[arxiv]
H. Fawzi, J. Gouveia, P. A. Parrilo, J. Saunderson, R. R. Thomas,
Lifting for Simplicity: Concise Descriptions of Convex Sets, SIAM Review, Vol. 64, No. 4, pp. 866–918, 2022.
[doi]
[arxiv]
[YouTube]
N. Shinde, V. Narayanan, J. Saunderson,
Memory-efficient structured convex optimization via extreme point sampling, SIAM Journal on Mathematics of Data Science, Vol 3, No. 3, 787–814, 2021.
[doi]
[arxiv]
J. Saunderson, Limitations on the expressive power of
convex cones without long chains of faces, SIAM Journal on Optimization, Vol 30, No. 1, pp. 1033–1047, 2020.
[doi]
[arxiv]
[BIRS talk]
J. Saunderson, Certifying polynomial nonnegativity via hyperbolic optimization, SIAM Journal on Applied Algebra and Geometry, Vol 3, No. 4, pp. 661–690, 2019.
[doi]
[arxiv]
[YouTube]
N. Veldt, D. Gleich, A. Wirth, J. Saunderson,
Metric-Constrained Optimization for Graph Clustering Algorithms, SIAM Journal on Mathematics of Data Science, Vol. 1, No. 2, pp. 333–355, 2019.
[doi]
[arxiv]
(Previous title: A Projection Method for Metric-Constrained Optimization)
H. Fawzi, J. Saunderson, P. A. Parrilo, Semidefinite approximations of the matrix logarithm,
Foundations of Computational Mathematics, Vol 19, No. 2, pp. 259–296, 2019.
[doi]
[arxiv]
[code]
Recipient of SIAM Activity Group on Optimization Best Paper Prize 2020.
R. Eghbali, J. Saunderson, M. Fazel, Competitive Online Algorithms for Resource Allocation over the Positive Semidefinite Cone,
Mathematical Programming Series B, Vol. 170, No. 1, pp. 267–292, 2018
[doi]
[arxiv]
J. Saunderson, A spectrahedral representation of the first derivative relaxation of the positive semidefinite cone,
Optimization Letters, Vol. 12, No. 7, pp. 1475–1486, 2018
[doi]
[arxiv]
[YouTube]
(Correction: For corollary 2 to hold, the matrix Vn on page 1484 should have orthonormal columns.)
A. Raymond, J. Saunderson, M. Singh, R. R. Thomas, Symmetric Sums of Squares over k-Subset Hypercubes,
Mathematical Programming Series A, Vol. 167, No. 2, pp. 315–354, 2018
[doi]
[arxiv]
H. Fawzi, J. Saunderson, Lieb's concavity theorem, matrix geometric means, and semidefinite optimization,
Linear Algebra and its Applications, Vol. 513, pp. 240–263, 2017
[doi]
[arxiv]
[matlab code]
H. Fawzi, J. Saunderson, P. A. Parrilo, Equivariant semidefinite lifts of regular polygons,
Mathematics of Operations Research, Vol. 42, No. 2, pp. 472–494, 2017
[doi]
[arxiv]
H. Fawzi, J. Saunderson, P. A. Parrilo, Sparse sums of squares on finite abelian groups and improved semidefinite lifts,
Mathematical Programming Series A, Vol. 160, No. 1, pp. 149–191, 2016
[doi]
[arxiv]
J. Saunderson, P. A. Parrilo, A. S. Willsky, Convex solution to a joint attitude and spin-rate estimation problem,
J. Guidance, Control, and Dynamics, Vol. 39, No. 1, pp. 118–127, 2016
[doi]
[arxiv]
H. Fawzi, J. Saunderson, P. A. Parrilo, Equivariant semidefinite lifts and sum-of-squares hierarchies,
SIAM J. Optimization, Vol. 25, No. 4, pp. 2212–2243, 2015
[doi]
[arxiv]
J. Saunderson, P. A. Parrilo, A. S. Willsky, Semidefinite descriptions of the convex hull of rotation matrices,
SIAM J. Optimization, Vol. 25, No. 3, pp. 1314–1343, 2015
[doi]
[arxiv]
[pdf]
J. Saunderson, P. A. Parrilo, Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones,
Mathematical Programming Series A, Vol. 153, No. 2, pp. 309–331, 2015
[doi]
[arxiv]
[pdf]
J. Saunderson, V. Chandrasekaran, P. A. Parrilo, A. S. Willsky,
Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting,
SIAM J. Matrix Analysis and Applications, Vol. 33, No. 4, pp. 1395–1416, 2012
[doi]
[arxiv]
[pdf]
[bibtex]
Refereed Conference Publications
C. B. Pham, W. Griggs, J. Saunderson, A Scalable Frank-Wolfe-Based Algorithm for the Max-Cut SDP,
to appear in Proceedings of the 40th International Conference on Machine Learning (ICML), 2023. [html]
B. McBain, E. Viterbo, J. Saunderson, Homophonic Coding for the Noisy Nanopore Channel with Constrained Markov Sources, Proc. 2023 IEEE International Symposium on Information Theory (ISIT), June 2023
[doi]
O. Faust, H. Fawzi, J. Saunderson, A Bregman Divergence View on the Difference-of-Convex Algorithm,
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, PMLR 206:3427-3439, 2023. [html]
B. McBain, E. Viterbo, J. Saunderson, Finite-State Semi-Markov Channels for Nanopore Sequencing,
Proc. 2022 IEEE International Symposium on Information Theory (ISIT), July 2022
[doi]
[arxiv]
N. Shinde, V. Narayanan, J. Saunderson,
Memory-Efficient Approximation Algorithms for Max-k-Cut and Correlation Clustering,
Proc. 35th Advances in Neural Information Processing Systems (NeurIPS), December 2021
[url]
[pdf]
[arxiv]
A. A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, Y. Zheng,
Improving efficiency and scalability of sum of
squares optimization: recent advances and limitations,
Proc. 56th IEEE Conference on Decision and Control (CDC), December 2017
[doi]
[arxiv]
A. Jalali, J. Saunderson, M. Fazel, B. Hassibi,
Error bounds for Bregman Denoising and Structured Natural Parameter Estimation,
Proc. 2017 IEEE International Symposium on Information Theory (ISIT), June 2017
[doi]
[pdf]
J. Saunderson, M. Fazel, B. Hassibi,
Simple algorithms and guarantees for low rank matrix completion over F2,
Proc. 2016 IEEE International Symposium on Information Theory (ISIT), July 2016
[doi]
[pdf]
K. Jaganathan, J. Saunderson, M. Fazel, Y. C. Eldar, B. Hassibi,
Phaseless super-resolution using masks,
Proc. 41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2016
[doi]
H. Fawzi, J. Saunderson, P. A. Parrilo, Sparse sum-of-squares certificates on finite abelian groups,
Proc. 54th IEEE Conference on Decision and Control (CDC), December 2015
[doi]
J. Saunderson, P. A. Parrilo, A. S. Willsky,
Semidefinite relaxations for optimization problems over rotation matrices,
Proc. 53rd IEEE Conference on Decision and Control (CDC), December 2014
[doi]
[pdf]
J. Saunderson, P. A. Parrilo, A. S. Willsky,
Diagonal and low-rank decompositions and fitting ellipsoids to random points,
Proc. 52nd IEEE Conference on Decision and Control (CDC), December 2013
[doi]
[pdf]
[bibtex]
M. J. Johnson, J. Saunderson, A. S. Willsky,
Analyzing Hogwild Parallel Gaussian Gibbs Sampling,
Advances in Neural Information Processing Systems (NIPS), December 2013
[url]
[pdf]
[bibtex]
J. Saunderson, V. Chandrasekaran, P. A. Parrilo, A. S. Willsky,
Tree-structured statistical modeling via convex optimization,
Proc. 50th IEEE Conference on Decision and Control (CDC), December 2011
[doi]
[pdf]
[bibtex]
T. Coleman, J. Saunderson, A. Wirth,
A local-search 2-approximation for 2-correlation-clustering,
Proc. European Symposium on Algorithms (ESA), September 2008
[doi]
[pdf]
[bibtex]
T. Coleman, J. Saunderson, A. Wirth,
Spectral clustering with inconsistent advice,
Proc. International Conference on Machine Learning (ICML), June 2008
[doi]
[pdf]
[bibtex]
Theses
|